tensorflow中的正则化函数在_线性回归中的正则化

这篇博客探讨了TensorFlow中L2和L1正则化在线性回归中的作用。L2正则化,也称为岭回归,通过添加L2范数的平方作为惩罚项,解决了最小二乘法的矩阵不可逆问题,提高了模型的泛化能力。L1正则化,即LASSO回归,使用L1范数,能进行特征选择,但计算过程可能不如L2正则化简便。两者都能防止过拟合,但在特征选择和可解释性上有不同特点。
摘要由CSDN通过智能技术生成

3b8a4d9528422fc1e9a528918fd2a12c.png
今天的话题从线性回归开始,在应对线性回归问题的时候,实质上就是训练1个函数
,这个等式可以通过我之前的文章最小二乘法来计算,即
,但是由于最小二乘法需要计算矩阵的逆,所以有很多的限制,比如
矩阵不可逆,又或者矩阵中有 多重共线性的情况,会导致计算矩阵的逆的时候行列式接近0,对数据很敏感,还有可能在训练模型的时候有 过拟合的情况出现(如下图,第3个图的曲线精确的学习到了所有的数据点,显然就是过拟合了),下面这里通过解决实际问题,一点一点推算出来解决这些问题的2种方法: L1L2正则化。

f7d9b54194a3316779fcfe685f794328.png

L2正则化

思想:开篇提到过,最小二乘法有很多限制和很多弊端,比如 多重共线性这个问题,由于需要计算矩阵的逆,所以训练出的模型系数往往会比较大 (行列式接近0),这样模型会很不稳定,所以大牛们就想啊,能不能给最小二乘法加上点 惩罚,让这个系数小一些,模型更稳定,泛化能力更好,于是就有了这个方法。

L2正则化即是在最小二乘法的基础上,加1个对系数的”惩罚项“,为了方便计算所以加上的是L2-norm的平方,这时候损失函数就为

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值