[转载] TensorFlow2.0 学习 线性回归

参考链接: 使用Tensorflow进行线性回归

import numpy as np

import tensorflow as tf

 

X = np.array([1, 2, 3, 4, 5], dtype=np.float32)

y = np.array([10, 19, 31, 42, 53], dtype=np.float32)

 

# X = (X_raw - X_raw.min()) / (X_raw.max() - X_raw.min())

# y = (y_raw - y_raw.min()) / (y_raw.max() - y_raw.min())

 

 

# X = tf.constant(X)

# y = tf.constant(y)

 

w = tf.Variable(initial_value=0.)

b = tf.Variable(initial_value=0.)

variables = [w, b]

 

num_epoch = 10000

optimizer = tf.optimizers.SGD(learning_rate=1e-3) # 声明了一个梯度下降优化器optimizer,学习率为1e-3

for e in range(num_epoch):

    # 使用tf.GradientTape()记录损失函数的梯度信息

    with tf.GradientTape() as tape:

        y_pred = w * X + b

        loss = tf.reduce_mean(tf.square(y_pred - y))

    # TensorFlow自动计算损失函数关于自变量(模型参数)的梯度

    grads = tape.gradient(loss, variables)

 

    # TensorFlow自动根据梯度更新参数

    optimizer.apply_gradients(grads_and_vars=zip(grads, variables))

 

 

 

 

print(w, b)

 

print(float(w))

10.8587007522583

print(b.numpy())

-1.5509015

print(w.numpy())

10.858701

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值