ipqc异常处理流程图_IPQC巡检流程.七大手法.八大原则.九大步骤

目的:巡检生产过程,有效检查及控制个工序生产状况能完全符合产品的质量要求。

职责:

  • 生产线员工:负责本工位产品的自检。
  • 生产领班:负责监督和跟踪生产与品质达成状况及指导员工正确作业。
  • IPQC:负责制程的巡检与监督异常处理。
  • 相关部门:参与并协同制程异常的分析及处理。
  • 生产技工:负责车间机器设备的调试。

388323b51a200d2b4ded06667ddaf27a.png

一、IPQC作业要求:

①IPQC巡检时必须依据SIP,工程蓝图,SOP,物料清单,工艺标准对产品的外观,尺寸,,装配,包装,性能进行检查,并做好相关巡检记录。

②巡检的频次:抽检产品的数量及检查项目等根据SIP进行。

③当客户对重点管制项目做SPC管制时,必须根据检验规范的要求进行。

④当发现异常时应通知车间及相关部门对其进行改善,必要时应对责任部门发出PDCS。

二、IPQC现场巡检内容:

①检查该产品相关的作业文件是是否齐全。

②检查生产设备与治工具是否定期保养,并留下书面记录。 

③工艺参数的设定是否与工艺参数要求相符。

④产品生产环境包含了温度,湿度,洁净度,光照度,静电防护是否符合生产制造及检验作业规范等相关要求。

⑤物料是否与BOM一致。

⑥各产品品质状况是否已做好唯一性标识区分。 

⑦发现不良后是否有做及时彻底追溯。

⑧员工操作时是否严格按照安全规范操作。

⑨现场是否有不安全隐患。

⑩员工自主检查是否在彻底有效的执行。

11,员工作业手法是否严格按照SOP操作。

12,员工是否按照作业指导书规定佩戴相关的劳保用品。

13,现场使用的相关执行文件,样品,量治具是否处于受控状态。

14,其它相关要求是否能满足。

a3c4c0a5009cc7711e0bd77b37328c7d.png

三、巡检制程的异常处理作业:

①主要制程异常类型:设备异常,治工具异常,品质异常,工艺参数异常同时也包括IPQC巡检内容。

②作业人员如发现生产作业不顺畅或自检发现异常时,应通知现场的责任人对其异常进行改善和排除以及汇报至现场的IPQC或生产组长或领班。

③IPQC巡检制程异常时应通知该现场的责任人对其异常进行改善和排除,责任人应在半小时内处理好。

④异常处理完成后应做好相应的处理记录。

⑤若出现异常严重时,或出现问题责任人在短时间不能排除时应汇报于相应主管对其进行处理,同时IPQC应队责任部门发出PDCS。 

⑥制程异常造成一小时以上停机的,当恢复生产时必须对首件再次确认,方可正式生产。

⑦制程异常所生产的不合格品按照《不合格品控制程序》处理。

⑧IPQC在巡检过程中发现有对产品品质有影响因素时,应发PDCS给相关责任人,QE在解决重大品质问题时应给责任部门发出8D报告,其依据的是《品质问题分析处理作业流程》进行。

5m1E是指:why(为什么要做)who(由谁做)what(做什么)where(哪里做)when(什么时候做)hao(如何做);

ISO的精神是:怎么说就怎么做怎么做就怎么方写;

内部审核可按严重性分为:严重不合格、轻微不合格、观察项;

质量成本分为:预防成本、鉴定成本、内部失败成本、外部失败成本;

为什么要对产品进行标识?

答:控制记录产品的唯一标识性便于追溯分析问题原因以免再发生;

6318136e6260d031104aff673783709f.png

什么是品种成本?

答:企业进行品种活动而发生的成本;

ISO9001中,何谓八项管理原则?

1.以顾客为中心 2.领导作用 3.全员参与 4.过程方法 5管理的系统方法 6.持续改进 7.基于事实的决策方法 8.互利的供方关系

不合格是指:未满足要求

质量管理的三个特性:充分性、适宜性、有效性

为防止不合格品被使用应采取哪些?

答:标识、隔离

ISO中质量的定义是什么?

答:一组固有特性满足要求的程度

什么情况下使用8D解决问题?

答:针对重复发生的,一直没有解决的比较重大的问题或者是针对客户要求回复的客诉抱怨

请说出4种直方图常见的形态?

答:正常形、锯齿形、偏态形、绝壁形、双峰形、离岛形高原形;

f340c403a0a39d9e58ae6395277b3b47.png

解决问题的9大步骤?

  • 1.发掘问题
  • 2.选择问题
  • 3.追插问题
  • 4.分析资料
  • 5.提出方法
  • 6.选择对策
  • 7.草拟行动
  • 8.成果比较
  • 9.标准化

品管旧七大手法:

  • 1.层别发法:按层分类,分别统计分析 作用:从不同层面发现问题
  • 2.特性要因图:寻找因果关系 作用:寻找引发结果的原因。又称鱼骨图
  • 3.检查表:调查记录数据用以分析 作用:收集整理资料
  • 4.散步图:找出两者之间的关系 作用:展示变数之间的线性关系
  • 5.直方图:解析数据分布状况 作用:展示过程的分布情况
  • 6.管制图:了解制程能力其变异状况这是作用、识别波动的来源
  • 7.柏拉图:找出重要的少数 作用:确定主导因素(所谓的二八原则)

新QC七大手法:

  • 1.关联图法:作用理清复杂因素间的关系
  • 2.系统图法:系统的寻求实现目标的手段
  • 3.亲和图法:从杂乱的语言资料中汲取资讯
  • 4.矩阵图法:多角度考察存在的问题变数关系
  • 5.PDPC法:预测设计中可能出现的障碍和结果
  • 6.箭条图法:合理制定进行计划
  • 7.矩形资料解析法:多变数转化少变数资料分析
### 回答1: 首先,我们需要分别获取这两条线段的端点坐标。假设这两条线段分别为线段A和线段B,则线段A有两个端点坐标(x1,y1)(x2,y2)线段B有两个端点坐标(x3,y3)(x4,y4)。 然后,我们可以使用叉积来判断两条线段是否相交。我们可以计算出线段A的向量(x2-x1,y2-y1)线段B的向量(x4-x3,y4-y3)的叉积。如果两条线段相交,则这两个向量的叉积一定不为零。 具体代码如下: ``` bool isIntersect(double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4) { double v1 = (x4-x3)*(y1-y3) - (y4-y3)*(x1-x3); double v2 = (x4-x3)*(y2-y3) - (y4-y3)*(x2-x3); double v3 = (x2-x1)*(y3-y1) - (y2-y1)*(x3-x1); double v4 = (x2-x1)*(y4-y1) - (y2-y1)*(x4-x1); return (v1*v2 < 0) && (v3*v4 < 0); } ``` 这段代码中,函数isIntersect()接收两条线段的端点坐标作为参数,并返回一个布尔值,表示这两条线段是否相交。 ### 回答2: 要判断两条线段是否相交可以使用QGIS中的C++代码。以下是一个简单的示例代码: ```cpp #include <qgsgeometry.h> bool areLinesIntersecting(const QgsPointXY& p1, const QgsPointXY& p2, const QgsPointXY& p3, const QgsPointXY& p4) { QgsGeometry g1(QgsWkbTypes::LineString); QgsGeometry g2(QgsWkbTypes::LineString); QgsPointXY points[] = { p1, p2 }; g1.addPart(QgsLineString(points, sizeof(points) / sizeof(points[0]))); QgsPointXY points2[] = { p3, p4 }; g2.addPart(QgsLineString(points2, sizeof(points2) / sizeof(points2[0]))); return g1.intersects(g2); } int main() { QgsPointXY p1(0, 0); QgsPointXY p2(10, 10); QgsPointXY p3(5, 0); QgsPointXY p4(5, 10); bool intersecting = areLinesIntersecting(p1, p2, p3, p4); if (intersecting) { qDebug() << "The lines are intersecting."; } else { qDebug() << "The lines are not intersecting."; } return 0; } ``` 以上代码定义了一个`areLinesIntersecting`函数,它接受四个点作为参数来表示两条线段。使用QgsGeometry创建两个线段,然后通过`intersects`函数来判断是否相交。在`main`函数中,我们定义了四个点作为示例输入,并调用`areLinesIntersecting`函数进行判断。根据返回结果,打印出相应的信息。 请注意,代码中使用了QGIS的相关类和函数,所以确保已正确安装并配置了QGIS库。另外,此代码只是一个简单示例,实际使用时可能需要考虑更多的边界情况和错误处理。 ### 回答3: 首先,QGIS是一个开源的地理信息系统软件,支持Python编程语言。要判断两条线段是否相交,可以利用QGIS的Geometry类来进行计算。下面是一个简单的示例代码,演示如何使用QGIS判断两条线段是否相交: ```python from qgis.core import * # 创建两条线段的几何对象 line1 = QgsGeometry.fromPolyline([QgsPointXY(0, 0), QgsPointXY(2, 2)]) line2 = QgsGeometry.fromPolyline([QgsPointXY(1, 0), QgsPointXY(1, 3)]) # 判断线段是否相交 if line1.intersects(line2): print("线段相交") else: print("线段相交") ``` 在上面的代码中,我们首先导入了`qgis.core`模块,该模块提供了与QGIS核心功能相关的功能。然后,我们使用`QgsGeometry`类创建了两条线段的几何对象。其中,`fromPolyline`方法用于创建线段的几何对象,传入的参数是一系列地理坐标点。接着,我们使用`intersects`方法判断两条线段是否相交。如果相交,则输出"线段相交",否则输出"线段相交"。 请注意,上述代码仅仅是一个示例,只适用于简单的线段相交判断。如果需要处理复杂的情况,例如线段重叠、线段共线等,可能需要使用更复杂的算法或者调用其他库来完成。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值