您可以使用data ==0来检测所有的零,这将给您一个布尔数组,然后沿着它的每一行执行np.any。或者,您可以使用data!=0检测所有非零,然后执行np.all来获得没有任何零的行掩码。在
还可以使用^{}来替换{},我个人认为这很疯狂,但这是一个好方法,因为它给我们带来了显著的性能提升,我们稍后将在本解决方案中进行确认。在
因此,下面列出了三种方法。在
方法1:rows_without_zeros = data[~np.any(data==0, axis=1)]
方法2:
^{2}$
方法3:rows_without_zeros = data[~np.einsum('ij->i',data ==0)]
运行时测试-
本节乘以本解决方案中提出的三个解决方案,还包括@Ashwini Chaudhary's approach的计时,这也是基于np.all的方法,但不使用掩码或布尔数组(至少在前端)。在In [129]: data = np.random.randint(-10,10,(10000,10))
In [130]: %timeit data[np.all(data, axis=1)]
1000 loops, best of 3: 1.09 ms per loop
In [131]: %timeit data[np.all(data!=0, axis=1)]
1000 loops, best of 3: 1.03 ms per loop
In [132]: %timeit data[~np.any(data==0,1)]
1000 loops, best of 3: 1 ms per loop
In [133]: %timeit data[~np.einsum('ij->i',data ==0)]
1000 loops, best of 3: 825 µs per loop
因此,似乎向np.all或np.any提供掩码比基于非掩码的方法有一点(大约9%)的性能提升。使用einsum,您将看到相对于基于np.any和{}的方法,20%的改进,这还不错!在