python 第一行非零_Numpy选择非零行

您可以使用data ==0来检测所有的零,这将给您一个布尔数组,然后沿着它的每一行执行np.any。或者,您可以使用data!=0检测所有非零,然后执行np.all来获得没有任何零的行掩码。在

还可以使用^{}来替换{},我个人认为这很疯狂,但这是一个好方法,因为它给我们带来了显著的性能提升,我们稍后将在本解决方案中进行确认。在

因此,下面列出了三种方法。在

方法1:rows_without_zeros = data[~np.any(data==0, axis=1)]

方法2:

^{2}$

方法3:rows_without_zeros = data[~np.einsum('ij->i',data ==0)]

运行时测试-

本节乘以本解决方案中提出的三个解决方案,还包括@Ashwini Chaudhary's approach的计时,这也是基于np.all的方法,但不使用掩码或布尔数组(至少在前端)。在In [129]: data = np.random.randint(-10,10,(10000,10))

In [130]: %timeit data[np.all(data, axis=1)]

1000 loops, best of 3: 1.09 ms per loop

In [131]: %timeit data[np.all(data!=0, axis=1)]

1000 loops, best of 3: 1.03 ms per loop

In [132]: %timeit data[~np.any(data==0,1)]

1000 loops, best of 3: 1 ms per loop

In [133]: %timeit data[~np.einsum('ij->i',data ==0)]

1000 loops, best of 3: 825 µs per loop

因此,似乎向np.all或np.any提供掩码比基于非掩码的方法有一点(大约9%)的性能提升。使用einsum,您将看到相对于基于np.any和{}的方法,20%的改进,这还不错!在

numpy数组元素周围的操作可以通过以下几种方式实现: 1. 切片操作:可以使用numpy数组的切片操作来获取数组中元素的周围元素。 例如,对于一个二维数组arr,要获取第i第j列元素周围的元素,可以使用如下切片操作: ```python arr[i-1:i+2, j-1:j+2] ``` 这将返回一个3x3的子数组,其中心元素为arr[i,j],周围的8个元素为该子数组的其余元素。 2. 使用numpy.pad()函数numpy.pad()函数可以用来在数组的边缘添加一个或多个值,从而扩展数组的大小。可以使用函数来添加额外的和列,然后通过索引访问周围的元素。 例如,对于一个二维数组arr,要获取第i第j列元素周围的元素,可以使用如下代码: ```python padded_arr = np.pad(arr, ((1, 1), (1, 1)), mode='constant') surrounding = padded_arr[i:i+3, j:j+3] ``` 这将在数组的边缘添加一和一列,并使用常量值填充这些额外的元素。然后可以使用切片操作来获取中心元素周围的元素。 3. 使用numpy.roll()函数numpy.roll()函数可以用来沿着给定轴滚动数组的元素。可以使用函数来将数组的和列进滚动,从而获取周围的元素。 例如,对于一个二维数组arr,要获取第i第j列元素周围的元素,可以使用如下代码: ```python rows, cols = arr.shape row_indices = np.arange(i-1, i+2) % rows col_indices = np.arange(j-1, j+2) % cols surrounding = arr[row_indices][:, col_indices] ``` 这将将第i向上和向下滚动一,并将第j列向左和向右滚动一列,从而获取中心元素周围的元素使用模运算可以确保在数组的边缘滚动时正确处理索引。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值