c++求矩阵的秩_【3.5】rank=1的秩1矩阵

68aa33de3dc2f5f9a989df589882efbb.png

秩才是矩阵真正的“大小”。看看这个矩阵:

, 它的第二行和第三行都是第一行的倍数,熟知矩阵乘法行的观点我们就可以很容易把
表示为:
的简化行阶梯矩阵
,通过
我们很容易发现
的秩等于

矩阵是很值得研究的,未来的学习中我们会发现它的行列式和特征值都很有意思。现在我们先来关注以下三点:
  • 矩阵只有一个主元。秩
    矩阵只有一个主元列,也只有一个主元行,矩阵每列/行都是第一列/行的倍数。对于矩阵,列的性质总能决定一些行的性质,这是了不起的事实。
  • 矩阵可以表示为
    ,反之能够表示为
    的矩阵也是秩
    矩阵。
    注意:列矢量乘行矢量的结果是矩阵;点乘是行矢量乘列矢量,点乘的结果是一个数。另:我们讨论的矢量都是列矢量,如本例中的
    ;当我们需要列矢量乘行矢量时,我们要把列矢量转置:
  • 所有矩阵都可以表示成秩
    矩阵的和。秩为
    的矩阵可以表示为
    个秩
    矩阵的和。

接下来我们讲讲上面提到的第三点:秩为

的矩阵可以表示为
个秩
矩阵的和。我们借助消元过程实现这一目的。

简化成
的过程可以表示为:
,所有消元的步骤相乘的结果是一个可逆矩阵
,我们在第二章中仔细讲过这个结论。这个
我们可以通过
得到,将
变为
的行变换同时将
变成了
。这是我们在第二章中学过的Gauss-Jordan求矩阵的逆,不同点在于第二章中我们研究的是可逆方阵
,它的简化行阶梯矩阵
,因此消元矩阵
就等于
,即
,也就是
,而这里的
可以是任意矩阵。

随后,我们自然而然的得到

,下面我们看看这个矩阵分解是如何提供了一种用
个秩
矩阵和表示矩阵的方法的。我们用具体的例子来说明这个方法:
,它的简化行阶梯矩阵
。 我们把
分解为
。为什么最后这个等号能成立呢?因为根据矩阵相乘的第四种观点,也就是外积的观点,
中的全零行自然是无足轻重的。实际上这里已经可以看到
被表示成了两个秩
矩阵的和了:
,每个外积
都是一个秩
矩阵,而外积的总数由
非零行的数目决定,也就是矩阵的秩,这个例子中
的秩为
。我们也可以写的再清晰一点 :

最后,值得一提的是:

矩阵保留了
的主元列
。这是由
的形式决定的,
中隐藏了
,它选择了
的主元列。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值