l2空间的完备性_群论(Group Theory)终极速成 / 群表示论下的正交性与完备性

该博客深入探讨群表示论中的正交性和完备性,介绍了特征标的基本属性、表示矩阵元的正交性和完备性,并通过类比量子力学中的狄拉克符号帮助理解。内容涵盖了有限群的表示理论,详细阐述了群函数的正交性、不可约表示的分解以及Ad分解。此外,还讨论了特征标的正交性和完备性,提供了完备性关系式的证明。
摘要由CSDN通过智能技术生成

90e1e8903250f836817331d53054d829.png

序言

从这里开始就要采取上下重复指标求和约定来运算了, 如果你本来就很懂指标运算, 那即使与我的记号有一定出入也不会影响阅读. 不过我可能老会说一些类似于"用分量代表张量""张量这个张量那个"之类的黑话, 这些听不懂应该不影响啥, 如果真的好奇我这边的约定或不懂指标运算或者好奇张量是啥的可以看下文:

文章很长, 懒得看也没关系, 可以只看文中第三章第一节直接给出的符号系统操作手册.
東雲正樹:物理人的张量运算 / 爱因斯坦求和? 何为矩阵? 为何这样乘? 什么是张量? 什么又是线性空间?

还有个记号就是, 我们会用绝对值符号表示"这是一个数"或者说"对应的个数", 比如说群

的阶数写作
, 元素共轭类
中元素的个数写作
.

这一节会有些抽象, 但抽象 ≠ 难, 抽象只是会觉得有些陌生, 所以为了打破这种陌生感我后面可能老是会写完就拿狄拉克符号类比一下, 如果你是量子力学懂哥, 你大概会很感谢我选择这么做了, 如果你没学过量子力学, 你就当没看到吧哈哈, 就是说如果出现了

这样怪浪怪浪的符号你直接就跳过也没啥.

目録

5. 群表示论下的正交性与完备性

5.1. 特征标的基本属性
5.2. 表示矩阵元的正交性
5.3. 特征标的正交性
5.4. 插曲 A - 可约表示的分解
5.5. 表示矩阵元的完备性
5.6. 插曲 B - Ad 分解
5.7. 特征标的完备性
5.8. 完备性关系式

(1~3) 東雲正樹:群论(Group Theory)终极速成 / 物理系零基础火箭级 note

(4~4) 東雲正樹:群论(Group Theory)终极速成 / 群表示理论

(5~5) 東雲正樹:群论(Group Theory)终极速成 / 群表示论下的正交性与完备性


5. 群表示论下的正交性与完备性

开头先约定一下:

记有限群
的全体不等价不可约的幺正
[1]表示为
,

┗ 同时约定
表示一维平凡表示.

5.1. 特征标的基本属性:

✦ 特征标

就是群表示矩阵
的迹, 即
.
上面这句话建立在
这个表示关系上, 其中
, 是一个任意的群元.

┣ 对
[2]
.

┣ 设
则有
, 这很显然, 因为 trace 就是求对角元和.

┗ 虽然很显然很懂的都懂但我还是要说一下, 上面都是对
都成立的.

✦ 特征标是一个类函数[3]:


┣ 硬要严格一点儿来说的话, 这个其实只是将同类元素都映射到同一个复数上的群函数.
┣ 但很显然这能自然地诱导出一个
的类函数吧?

┗ 我一般会利用等式
定义真正的类函数特征标
.

✦ 你可以用特征标计算表示的维度:

, 其中
为单位元,
当然是单位阵.

✦ 正则表示的特征标:

正则表示的特征标比较奇妙, 所以专门写出来, 后面还会用到.
┣ 群
的正则表示由关系: 对
定义,

┣ 关系式中的
为表示空间
的基矢.

┣ 显然地, 与其它任何表示都一样, 对单位元
.

┣ 而一般群元的表示矩阵的特征标或者说迹就表达为:
.

┗ 不难发现正则表示下只有单位元
对应表示矩阵的特征标不为零, 请记住这个结论
[4].

✦ 本文目的是引入群论前五章最最最重要的结论, 即群表示论下的正交性与完备性:

记有限群
的全体不等价不可约幺正表示为
:

┣ (1). 表示矩阵元正交性:
.

┣ (2). 表示矩阵元完备性:
.

┣ (3). 特征标的正交性:
.

┗ (3). 特征标的完备性:
.

上述 (1),(2) 给出的是群函数空间的完备基; (3),(4) 给出的是群类函数空间的完备基.
┣ 然后我个人设立

┗ 就是为了能用上正交且归一的完备基组, 这是我个人的强迫症, 你们随意.

5.2. 表示矩阵元的正交性:

✦ 考虑有限群

的两个不可约表示
,

我们将证明一个超妈重要的式子:

.
上式不是表示的幺正性造成的, 实际上 5.2 节后半部分才用到幺正性, 单用幺正性只能得到:
.

证明:

先构造一个
型且仅在第
行第
列不为
的矩阵
.

┣ 这个矩阵唯一的非零元是
, 怎么用分量表达它呢? 答案是
.

┣ 你一定会有疑问:
不是一个 (2,2) 型张量吗? 一句话解释就是
固定了.

┣ 也就是说,
在这里不是跑动的求和指标, 而是确定的数, 所以总的说是 (1,1) 型张量.

┣ 想看更进一步解释参考文章: [特殊矩阵](还没写完, 写完将附上链接),
┗ (不过这个矩阵的部分已经写完了, 我复制过来放到本文末的 [临时附录] 中了.)
定义矩阵
.

┣ 你会发现这个矩阵就是我们要求的
:



.

现在往
上右乘一个矩阵
:




.

得到
作为 intertwiner 的关系式:
.

┣ 要开始使用我们的必杀技 Schur 引理一的推论和引理二了:
┣ (长话短说版推论: 若有映射满足
要么为零要么可逆.)

┣ (长话短说版引理二: 只有常数矩阵和零矩阵才能与不可约表示的表示矩阵对易.)
┣ (1). 当
时,
二者不等价不可约, 此时只能是
[5].
┣ (2). 当
时,
, 有
, 其中
[6].
┣ 综上所述
.

┣ 综上所述有
.

┣ 令
:

┣ 中间
.

┣ 右边
, 重复指标求和别忘咯.

┗ 综上
, 注意
在这里不是跑动的求和指标, 而是确定的数.

终极综上述得

.
我们虽然是按住了
证明的, 但实际上这是由于矩阵表述的局限性, 是为了让你好理解.

┣ 所以实际上你把这个看成 (2,2) 型张量也没什么不妥的.
┣ 其实就算一开始不定义那个只有一个元素为
其它位置全
的矩阵
.

┣ 我们照样可以通过令
来证明这一切,

┗ 但对新手不太友好我就没这么做, 绕了个弯子还是想用矩阵来描述.

✦ 如果像约定好的那样,

都是幺正表示的话就能具有正交性:
, 内与间指表示内与表示间.

┗ 类比一下量子力学中的正交性关系式:
.

✦ 还记得我们在正则表示后面的 4.3 节中提到的群函数的概念吗?

当时说正则表示空间
中一个矢量就是一个群函数.

┣ 现在你会发现表示
对应的表示矩阵的每一个分量都是一个群函数:

┣ 对
有分量
.

┗ 所以
对应的表示矩阵其实是
个群函数或者说
中的矢量.

✦ 强行类比狄拉克符号:

通过上述观点再来看式子
.

┣ 强行类比狄拉克符号即

┣ 由此

.

┗ 现在你知道群函数和
矢量怎么回事了吧? 其实很几把类似于波函数与态矢量对吧
[7].

对比一下矩阵元正交关系与氢原子能态

你就会发现上面这个无非就是还没归一化罢了.

✦ 结论: 若我们给出群

的所有不等价不可约幺正表示
, 则表示矩阵的矩阵元函数集合
可以构成
的一组正交矢量.
他们显然相互线性独立 [8], 且总数为
个.

┗ 要知道, 由于维度限制,
中最多只能找到
个线性无关的矢量.

✦ extra:

构造正交归一矢量组

.
你可以不这么做, 但我后面用到带 hat 的矩阵元的时候你要知道这多了一个归一化系数.

5.3. 特征标的正交性:

✦ 令正交性关系式中的

得到关系:
.

┣ 即
.

┗ 可以令
将上式归一化.

✦ 再次强行类比狄拉克符号

.
.

✦ 结论: 群函数

中正交归一的矢量组.
即满足关系
.

┗ 顺带一提就是
我称之为正交归
中的矢量组.

✦ 特征标作为类函数的正交性:

单说
中的正交矢量组(即正交群函数)已经有
了.

┣ 那我们为何还要费心思再找特征标做正交群函数组呢? 这是因为特征标具有类函数的性质:
┣ 对
.

┣ 于是有
[9]
┣ 显然这样求和就有很多重复项了, 所以现在我们改为对类求和:
.

┣ 综上所述有
.

┗ 记
, 其中
.

✦ 结论:

是正交归一的类函数组.
[10]中的正交归一矢量组.
┣ 显然集合内矢量的数目与不等价不可约幺正表示集合
内的元素数目相同.

┗ 类比
中的正交组.

5.4. 插曲 A - 可约表示的分解:

有了正交性, 自然就期待完备性了吧?
┗ 有的有的, 不过为了证明完备性, 我们先要介绍一下如何进行可约表示的分解.

✦ 用有限群

的全体不等价不可约的幺正表示
进行可约分解:
前面我们提到可约表示可以分解到不可约表示
.

┣ 现在要用集合
内的不可约幺正表示来进行分解:
.

┗ 上式中
表示的是在直和式中
出现的次数.

✦ 那么如何求这个系数

呢? 答案是用特征标:
.

.

.

┣ 观察上面的计算我们可以这样作类比

┣ 即把
分别看作矢量与基矢.

┗ 类比为
.

强行用狄拉克符号类比就是说:
.

┣ 考虑到
还可以进一步改写上式:

.

✦ 表示

不可约的充要条件:
前面说了有
然后又有
.

┣ 那么若是跟自己做内积, 即
会得到什么呢?

┣ 这很显然是
对吧? 你要觉得不显然我就会很伤心
[11].
┗ 不管, 我就是不证明这个, 你要觉得不显然你就自己想办法证明.
接下来观察
, 其中
, 那假如
说明什么?

┣ 有没有可能是一堆小于
拼起来等于
呢?
你觉得有可能吗?

┣ 这很显然说明
中只有一个元素不为零, 且必为
.

┣ 不妨设
, 这说明啥? 这说明
.

┣ 那这是否说明
呢? 不见得罢, 别忘了等价表示的特征标相同.

┣ 所以至少可以说明
, 那么与不可约表示等价的表示自然也是不可约的.

┗ 综上所述,
是表示
不可约的一个充要条件.

5.5. 表示矩阵元的完备性:

✦ 证明全体矩阵元函数

的完备性:
考虑正则表示的可约分解:
.

┣ 其中

.

┣ 上面第二个等号是因为
, 这在
5.1 节证明过.
┣ 将上述结论代入表达式得到:
.

┗ 对上式两边取维度得:
.

还记得 5.2 节吗? 最后我们提到了一个这样的结论:

所有不等价不可约幺正表示矩阵的矩阵元函数集合为

┣ 这个集合可以构成
的一组正交矢量, 且总数为
个.

┗ 要知道, 由于维度限制,
中最多只能找到
个线性无关的矢量.

而前面我们证明了
.

┗ 所以说, 这不仅仅是一组正交矢量, 他们甚至是正则表示空间
的一组完备基底.

✦ 任何一个群函数

作为
中的矢量都可以被上述矩阵元矢量展开:
即对
.

┗ 其中
是相对于归一化基组的展开系数.

5.6. 插曲 B - Ad 分解:

有了矩阵元的完备性, 自然就期待特征标的完备性了吧?
┗ 有的有的, 不过为了证明特征标的完备性, 我们先要介绍一个叫做 Ad 分解的操作.

✦ 用群函数强制诱导类函数:

前面我们碰到过将所有同类元素都映射到同一个复数的群函数 [12], 称之为 Ad 不变群函数,
┣ 用 Ad 不变群函数去自然地产生一个类函数我想即使是小学生估计也能凭直觉做出来.
┣ 而接下来我们要介绍一个叫做 Ad 分解的操作,
┗ 它可以用任意群函数诱导出一个 Ad 不变群函数来, 然后可由此再自然地产生一个类函数.
Ad 分解的具体操作:
┣ 由
定义
其中
.

┣ 你会发现对
有:




[13].
┗ 即此操作可以用任意群函数强制产生一个 Ad 不变群函数.

✦ Ad 分解之所以称为分解是因为我们认为这个操作提取出了群函数的 Ad 不变部分.

所以对一个本来就是 Ad 不变的群函数做这个操作是不会改变这个函数的:
┣ 即假如
本来就是一个 Ad 不变的群函数, 则有:

.

✦ 对作为群函数的不可约表示矩阵的矩阵元试试看:




.

┣ 你会发现不可约表示矩阵的任何矩阵元的 Ad 不变部分都正比于特征标
.

┣ 这就是说虽然
能产生
个群函数, 但它们的 Ad 不变部分都是一样的.

┗ 这直观地解释了为何
内的元素数相同.

5.7. 特征标的完备性:

✦ 任何一个 Ad 不变群函数都可以被

展开:
前面我们指出了任何一个群函数作为
中的矢量可以被完备正交矩阵元矢量展开:

┣ 即对
其中
是系数.

┣ 而我们前面又论述过 Ad 分解对 Ad 不变群函数而言是一个恒等操作.
┣ 于是我们可以用完备正交矩阵元矢量展开一个 Ad 不变群函数
:

┣ 即
, 现在我们对等式两边进行 Ad 分解:

┣ 得
.

┣ 对了, 提一下
[14].
.

┣ 这说明任何一个 Ad 不变群函数都可以被
展开.

┣ 这说明了
的完备性,

┗ 我想这很显然可以推知
也是完备且正交归一的.

✦ 矢量组

的完备性说明这里边儿共有
个矢量.
这同时就说明了
里边儿只有
个元素.

┗ 这至少说明了在有限群中有结论: 群中共轭类的数目等于不等价不可约幺正表示的数目.

5.8. 完备性关系式:

既然有完备性, 自然就会给出完备性关系式.

✦ 表示矩阵元的完备性关系式:

, 其中
就是
中的矢量.
什么叫做完备性? 具有完备性的意思就是说空间中任何东西都能被它展开.
┣ 现在的空间就是这个
, 所以是抽象矢量的展开, 但是除了我其他人全都只写函数形式.

┣ 那无非就是类比到波函数被完备函数基展开的感觉吧:
┣ 对
.

.

.

.

.

┗ 写这么详细还是为了照顾一下跟我一样在 QM 里很少进行波函数计算所以不太熟悉的人.
狄拉克符号强行类比:

┣ 已知正交性表达为
.

┣ 所以完备性自然表达为
.

.

.

.

✦ 特征标的完备性关系式:

其中
就是
中的矢量.
完全类似上文的处理方法, 这次无非就是展开
空间里的函数罢了.

.

.

.

.

.

狄拉克符号强行类比:

┣ 已知正交性表达为
.

┣ 所以完备性自然表达为
.

.

.

.

[临时附录] 仅在 μν 列为 1 其它位置均为 0 的矩阵

我称这样的矩阵为

, 结论就是
.
其中
并不是求和指标, 而是确定的数字, 所以这么写不会构成张量 (2,2) 型张量.

下面先看看

如何作用:
,
.

┣ 最后得到的矩阵是
的, 既
.

┣ 容易(用 mma )算得作用结果是
,

┗ 既
会将
的第
行放到结果矩阵的第
行里.

那么类推

就是将作用矩阵得第
行放在结果矩阵的第
行上.

所以结果的分量实际上可以翻译为:

然后你就会觉得很奇妙: 欸你这个你这不是 (2,2) 型张量了吗? 吓人嗷.
┗ 其实吧,
并不是求和指标, 而是确定的数字, 所以不会构成张量要素.

用这个结果反推得到

.
可以看到是满足运算的:
.

┗ 但总觉得怪怪的, 希望大家能意识到
并不是求和指标, 而是确定的数字吧.

接下来就是验证被左乘的结果是否自洽了:

, 有
.

说明第
列被摆到第
列, 很对! yeah!!

最后, 我要说的是你也可以把

当作一个 (2,2) 型张量.
怎么理解这个张量呢, 我只能说它的确定
的分量是矩阵
.

┗ 所以我的意思就是, 这个符号其实很灵活, 都取决于你的观点.

参考

  1. ^每一个表示的等价类取一个代表元, 必须选取幺正表示, 后面将要讲到的能从逆到厄米共轭就是由于幺正性, 也只有幺正表示才能产生后面的正交关系.
  2. ^这个符号是等价表示的意思, 讲过的.
  3. ^第一次引入类函数概念时举的例子其实就是特征标.
  4. ^就本文后面证明完备性的时候会用到.
  5. ^可逆呢? 可逆这俩就等价了, 这就没意思了嘛, 我们约定好了{R^(i)}这个集合里面的符号都表示互不等价不可约的幺正表示对吧.
  6. ^零矩阵呢? 零矩阵就没劲了嘛. 最后的结果也包括了 0 矩阵的情况.
  7. ^这里很少有人会这么说, 是我自己瞎编的, 你听一乐就好了, 别当成什么正式概念了. 如果你没学过量子力学, 哈哈, 那你肯定看不懂这是啥.
  8. ^草, 都正交了你说呢.
  9. ^注意到最后的特征标多了一个上标 cl, 这里我是为了稍微严谨一点儿, 一开始的特征标是一个群元到复数的映射, 而现在变成了群元类到复数的映射了, 还是想像前面提到过的那样把记号区分一下. 毕竟一个是群函数, 一个是类函数.
  10. ^即类函数空间.
  11. ^我前面反反复复频繁或强烈地暗示你这玩意儿的矢量观点就是为了让你觉得显然.
  12. ^哎说的就是特征标啦.
  13. ^最后用到了群的封闭性与重排定理这种像呼吸一样简单的性质就不用我多说了吧.
  14. ^你要知道, 这里的指标已经被求和操作锁定了, 所以它不再是求和指标, 而只是具体的数了.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值