l2空间的完备性_泛函分析笔记(8)赋范线性空间简介

本文介绍了泛函分析中的核心概念——巴拿赫空间,它是赋范线性空间的完备化。文章阐述了赋范线性空间的定义,包括范数的性质和距离的定义,并探讨了由范数诱导的距离空间的完备性。举例说明了一些完备与不完备的赋范线性空间,并简要讨论了商空间的概念及其在构造新线性空间中的应用。
摘要由CSDN通过智能技术生成

3a50d7e65c1ed701c95b5dbbad760a78.png

泛函分析可以说是“无限维空间上的分析学”,更特殊一些则是“巴拿赫空间上的分析学”,由此可见巴拿赫空间对于泛函分析的重大意义,这就像欧几里得空间在古典数学分析中的地位一样。下面我们来重点介绍这样的空间。

观察我们在前面几次笔记里关于距离空间的例子,它们并不是只有距离这样的结构,比如欧几里得空间,它不仅有距离,还有加法数乘这样的运算,我们在研究一些线性或者非线性问题中非常需要这样的结构。因此引入线性空间并在线性空间中引进适当的收敛就显得尤为必要。

有关线性空间(向量空间)的概念在任何一本线性代数教材中都有涉及,这里我们略过不提,单刀直入了解赋范线性空间:

1、赋范线性空间:

定义1: 设E是实(或复)线性空间,若对于E中每个元素x,都有一个实数

与之对应,且满足以下条件:

(i)

当且仅当
(指线性空间中的零元素);

(ii)

,这里
是实(或复)数;

(iii)(三角不等式)

(设
).

则称E为实(或复)赋范线性空间

称为元素x的
范数。

给出了范数的概念后,我们自然联想到范数与距离之间的关系:

对于赋范线性空间E,我们用下面的等式

定义元素x与y之间的距离。容易证明该距离确实满足距离公理。

由此我们按照上述距离可以给出赋范线性空间中点列的收敛:所谓E中点列

收敛于点
是指

此时我们称

依范数收敛于x,有时也称 <
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值