stata怎么判断是否存在异常值_如何精确识别异常值——基于Stata的进一步解析(原创)...

本文详细介绍了如何使用Stata进行异常值的识别与处理,包括初步识别异常点、精确识别异常值的统计特征、精确缩尾处理,以及批处理多个序列的代码实现。通过对pop和hsng序列的案例分析,展示了Stata在异常值管理中的应用。
摘要由CSDN通过智能技术生成

来源:Taotao Tu原创。

前面的帖子,我们介绍了异常值识别与处理的全流程方法。

但是,在有一个细节上,还需要格外注意,即如何精确识别出异常值的范围?

我们来看一个具体的例子

1.导入数据

webuse hsng

dc795b4a8459c64bc2d8eb9bb52eb31e.png

2.异常点的初步识别

让我们来初步看看,哪些变量可能存在异常点的问题。

首先,我们来看看变量的基本属性

describe

0c60d485aa83a743d1f65158ab98cbe2.png

从上图可以看出,除了state是string变量,其他的均为数值型变量。

接下来,让我们初步识别一下 如何甄别 存在异常值的变量

graph box division region pop popgrow popden pcturban faminc hsng hsnggrow hsngval rent

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值