public class BackPack {
public static void main(String[] args) {
int m = 10;
int n = 3;
int w[] = {3, 4, 5};
int p[] = {4, 5, 6};
int c[][] = BackPack_Solution(m, n, w, p);
for (int i = 1; i <=n; i++) {
for (int j = 1; j <=m; j++) {
System.out.print(c[i][j]+"\t");
if(j==m){
System.out.println();
}
}
}
//printPack(c, w, m, n);
}
/**
* @param m 表示揹包的最大容量
* @param n 表示商品个数
* @param w 表示商品重量数组
* @param p 表示商品价值数组
*/
public static int[][] BackPack_Solution(int m, int n, int[] w, int[] p) {
//c[i][v]表示前i件物品恰放入一个重量为m的揹包可以获得的最大价值
int c[][] = new int[n + 1][m + 1];
for (int i = 0; i < n + 1; i++)
c[i][0] = 0;
for (int j = 0; j < m + 1; j++)
c[0][j] = 0;
for (int i = 1; i < n + 1; i++) {
for (int j = 1; j < m + 1; j++) {
//当物品为i件重量为j时,如果第i件的重量(w[i-1])小于重量j时,c[i][j]为下列两种情况之一:
//(1)物品i不放入揹包中,所以c[i][j]为c[i-1][j]的值
//(2)物品i放入揹包中,则揹包剩余重量为j-w[i-1],所以c[i][j]为c[i-1][j-w[i-1]]的值加上当前物品i的价值
if (w[i - 1] <= j) {
if (c[i - 1][j] < (c[i - 1][j - w[i - 1]] + p[i - 1]))
c[i][j] = c[i - 1][j - w[i - 1]] + p[i - 1];
else
c[i][j] = c[i - 1][j];
} else
c[i][j] = c[i - 1][j];
}
}
return c;
}