01算法 java_动态规划之揹包问题01——Java实现

public class BackPack {

public static void main(String[] args) {

int m = 10;

int n = 3;

int w[] = {3, 4, 5};

int p[] = {4, 5, 6};

int c[][] = BackPack_Solution(m, n, w, p);

for (int i = 1; i <=n; i++) {

for (int j = 1; j <=m; j++) {

System.out.print(c[i][j]+"\t");

if(j==m){

System.out.println();

}

}

}

//printPack(c, w, m, n);

}

/**

* @param m 表示揹包的最大容量

* @param n 表示商品个数

* @param w 表示商品重量数组

* @param p 表示商品价值数组

*/

public static int[][] BackPack_Solution(int m, int n, int[] w, int[] p) {

//c[i][v]表示前i件物品恰放入一个重量为m的揹包可以获得的最大价值

int c[][] = new int[n + 1][m + 1];

for (int i = 0; i < n + 1; i++)

c[i][0] = 0;

for (int j = 0; j < m + 1; j++)

c[0][j] = 0;

for (int i = 1; i < n + 1; i++) {

for (int j = 1; j < m + 1; j++) {

//当物品为i件重量为j时,如果第i件的重量(w[i-1])小于重量j时,c[i][j]为下列两种情况之一:

//(1)物品i不放入揹包中,所以c[i][j]为c[i-1][j]的值

//(2)物品i放入揹包中,则揹包剩余重量为j-w[i-1],所以c[i][j]为c[i-1][j-w[i-1]]的值加上当前物品i的价值

if (w[i - 1] <= j) {

if (c[i - 1][j] < (c[i - 1][j - w[i - 1]] + p[i - 1]))

c[i][j] = c[i - 1][j - w[i - 1]] + p[i - 1];

else

c[i][j] = c[i - 1][j];

} else

c[i][j] = c[i - 1][j];

}

}

return c;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值