gan处理自己的数据集_pytorch:实现简单的GAN示例(MNIST数据集)

这是一个使用PyTorch实现简单GAN的示例,针对MNIST数据集。代码包括预处理、数据加载、定义判别器、生成器、损失函数以及训练过程。
摘要由CSDN通过智能技术生成

# -*- coding: utf-8 -*-

"""

Created on Sat Oct 13 10:22:45 2018

@author: www

"""

import torch

from torch import nn

from torch.autograd import Variable

import torchvision.transforms as tfs

from torch.utils.data import DataLoader, sampler

from torchvision.datasets import MNIST

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.gridspec as gridspec

plt.rcParams['figure.figsize'] = (10.0, 8.0) # 设置画图的尺寸

plt.rcParams['image.interpolation'] = 'nearest'

plt.rcParams['image.cmap'] = 'gray'

def show_images(images): # 定义画图工具

images = np.reshape(images, [images.shape[0], -1])

sqrtn = int(np.ceil(np.sqrt(images.shape[0])))

sqrtimg = int(np.ceil(np.sqrt(images.shape[1])))

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值