一.概念描述
现代数学:减法是数学中的基本运算之一。最简单的是数的减法,减法是加法的逆运算。已知两个数a与b,要求一个数c,能满足b+ c=a,那么c称为a和b的差,记作a-b=从,读作a减b等于c。a称为被减数,b称为减数,c称为差,符号“-”称为减号。减法是加法的逆运算,减法可以定义为:已知两个加数的和与其中一个加数,求另一个加数的运算。在仅能运用正数的算术中,被减数不能小于减数。在引进负数和负号后,减法可以统一于加法,即a-b=a+(-b)。
小学数学:小学数学教材没有明确的定义,主要是通过情境图,让学生初步理解减法的意义。例如,2 013年北京版教材第1册的第43页,借助买饮料的连环面,让学生体会从整体里面去掉一部分,还剩几瓶饮料。即让学生用减法运算。
二.概念解读
减号的产生见本书“加法”概念解读部分。
整数减法法则分三种情形表述:
一位数或两位数减去一位数,而差是一位数的减法法则。根据减法是加法的逆运算的关系,可利用加法表来计算。
多位数减法法则。相同数位对齐,从个位减起,哪一位上的数宇不够减就从前一位借一当十,然后再减。
对于任意数a,总有a-a=0,a-0=a,0-0=0。
差的变化规律:指差随被减数或减数变化而变化的规律。
如果被减数增加(或减少)一个数,减数不变,那么差也随着增加(或减少)同一个数。即:如果a-b=c,那么(a+m)-b=c+m或(a-m) -b=c-m。
如果减数增加(或减少)一个数,被减数不变,那么它们的差反而减少(或增加)同一个数。即a-b=c,那么a-(b+m)=c+(-m)或a-(b-m)=c+m。
如果被减数和减数同时增加(或减少)一个数,那么它们的差保持不变。即:如果a-b=c,那么(a+m)-(b+m)=c或(a-m)-(b-m) =c。
三.教学建议
全面理解解减法的意义。富森在《正整数加减法的现实意义》中提出,正整数加减法的现实意义主要包括聚合、比较、增加性变化、减少性变化。在教学中,教师不应该唯一强调某一种现实情境(富森指出),而应当注意现实情境的多样化,逐步完善减法的意义。
①在一年级教学中,要结合具体情境,帮助学生建立减法模型。减法的应用可以理解为从一个数里去掉一部分求剩余是多少,或者求两数相差多少。例如,2009年人教版教材安排了一位小朋友拿走1只纸鹤的活动,说明从3只中去掉1只,求剩下多少。用减法计算即3-1=2;还可以看成有3个小朋友,走了1个,求剩下几个,也可以用3-1=2来表示。接着,教材安排让学生认识减号以及减法算式的读法,演示一个小朋友把手中的4个气球放飞2个的活动过程,说明求剩下几个,并要用减法计算。在此基础上,教材还安排了求两个数相差多少的实际问题,使学生体会:不同的情境原型都是从整体里去掉了一部分,用减法计算,初步建立减法的概念。
例如,丁育慧老师在实际教学中,依据低年级学生的特点,结合具体情境,加强直观,帮助学生建立减法模型。
丁老师先出示情境图(乐乐手里的4个气球飞走了1个,还剩几个气球?),让学生说说图的意思。接着让学生用不同的方法解决问题---可以说一说,也可以把想法在本上写一写或者画一画。之后让学生交流想法---有的学生借助实物图就找到了答案(图上有4个气球,飞走了一个,从4个气球里去掉飞走的一个,数数还剩1、2、3,所以还剩3个气球);还可以借助手中的小棒摆一摆,也能解决(先摆4根小棒,表示4个气球,飞走一个气球,就拿走一根小棒,数数还剩3根小棒,所以还剩3个气球);还可以通过画图解决问题(先画4个圆表示乐乐手里拿的4个气球,用斜线划去一个圆表示飞走的1个气球,数数还有3个圆,所以就还剩3个气球);当然还有用算式(4-1=3)解决问题的---丁老师让学生说,说算式的意思,学习减法算式的读法和写法。接着,丁老师又出示了不同的情境,让学生思考为什么都可以用减法解决,使学生理解它们都是从整体中去掉一部分,求还剩多少的问题,从而帮助学生建立减法模型。
②在中年级教学中,教师要不断引导学生理解:减法是已知两个加数的和与其中一个加数,求另一个加数的运算。为了深入理解减法的意义,可以利用加法、减法互为逆运算作为突破口,让学生通过归纳、推理,概括出减法的意义。
如对下图,让学生观察三个算式有什么相同的地方。
然后,教师可以引导学生弄清在加法中是已知的,在减法中是未知的;在加法中是未知的,在减法中则变成了已知的。也就是说,减法中的已知条件和问题与加法中的已知条件和问题正好是相反的。继而,教师可以引导学生思考:从上面减法的算式看,减法是一种什么样的运算?进而归纳总结:己知两个加数的和与其中的一个加数,求另一个加数的运算,叫作减法。而从加、减法的意义上看也是一种相反的运算,因此说减法是加法的逆运算,逆运算也就是相反的运算。
四.推荐阅读
(1)《谈减法的两种定义》(王清宇、刘德珍,《湖南教育》(上),1988年第12期)
该文详细介绍了减法的两种定义的联系和区别。
(2)《小学数学研究》(张奠宙等,高等教育出版社,2009)
该书第26页的《关于自然数的加法、减法、乘法、除法的定义》介绍了用集合语言定义自然数之后,怎样描述性地定义自然数的运算。