二次拟合r方_R方和线性回归拟合优度

本文通过实例分析指出,R方虽然衡量了模型对数据的解释程度,但高R方值并不能确保模型正确指定。文中通过模拟数据展示了即使在模型错误指定的情况下,R方仍可能具有较大值,强调了使用模型诊断技术如残差图和线性预测器来评估模型正确性的重要性。
摘要由CSDN通过智能技术生成

原文连接:http://tecdat.cn/?p=6267​tecdat.cn

我最近一直在教授建模课程,并一直在阅读和思考适合度的概念。 R方由协变量X解释的结果Y的变化比例通常被描述为拟合优度的度量。这当然看起来非常合理,因为R平方测量观察到的Y值与模型的预测(拟合)值的接近程度。

然而,要记住的重要一点是,R平方不会向我们提供有关我们的模型是否正确指定的信息。也就是说,它没有告诉我们我们是否正确地指定了结果Y的期望如何取决于协变量。特别是,R平方的高值并不一定意味着我们的模型被正确指定。用一个简单的例子说明这是最简单的。

首先,我们将使用R模拟一些数据。为此,我们从标准正态分布(均值为零,方差一)中随机生成X值。然后,我们生成结果Y等于X加上随机误差,再次使用标准正态分布:

n < - 1000 set.seed(512312) x < - rnorm(n) y < - x + rnorm(n)

然后我们可以拟合Y的(正确的)线性回归模型,其中X作为协变量:

summary(mod1) Call: lm(formula = y ~ x) Residuals: Min 1Q Median 3Q Max -2.8571 -0.6387 -0.0022 0.6050 3.0716 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.02193 0.03099 0.708 0.479 x 0.93946 0.03127 30.040 <2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.98 on 998

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值