【统计学习系列】多元线性回归模型(六)——模型拟合质量评判:RMSE、R方、改进R方、AIC\BIC\SIC

本文介绍了多元线性回归模型的拟合优度评价指标,包括均方根误差(RMSE)、R方、调整R方以及AIC、BIC和SIC。通过离差平方和分解定理,阐述了这些指标的计算和意义,用于比较不同模型的优劣,并讨论了它们如何在模型复杂性和拟合效果之间找到平衡。
摘要由CSDN通过智能技术生成


1. 前文回顾

在上一篇文章中,我们介绍了参数的显著性检验——t检验,和模型的显著性检验——F检验(详情请见:多元线性回归模型(五)——参数与模型的显著性检验:t检验与F检验

现在我们来考虑一个新问题:假设一现在两个模型都可以用来拟合因变量,且每个模型的各个参数均显著,那么这两个模型哪个更好呢?有什么指标可以用来比较两个模型孰优孰劣呢?那就让我们带着这个问题继续探索吧。


2. 一些引理与离差平方和分解定理(可略)

我将本文需要的一些引理与相关证明放在这一章节中,其中最重要的要属离差平方和分解定理不感兴趣的小伙伴可以跳过本章的证明过程。

2.1 引理1

引理1】 样本真值与模型拟合值的残差和为0,即:
∑ i = 1 N ( y i − y i ^ ) = 0 \sum_{i=1}^{N} ( y_i- \hat{y_i})= 0 i=1N(yiyi^)=0

Proof:

根据对 β0 的偏导数为0,即可得证。

Q.E.D.

2.2 引理2

引理2】样本真值与模型拟合值的残差和为0,即:
∀ j ∈ { 1 , 2 , . . . , p } ,     ∑ i = 1 N x i j ( y i − y i ^ ) = 0 \forall j \in \{1, 2, ..., p \}, \ \ \ \sum_{i=1}^{N} x_{ij} (y_i- \hat{y_i})= 0 j{ 1,2,...,p},   i=1Nxij(yiyi^)=0

Proof:

根据对 βi 的偏导数为0,即可得证。

Q.E.D.

2.3 引理3

引理3
∑ i = 1 N y ^ i ( y i − y i ^ ) = 0 \sum_{i=1}^{N} \hat{y}_{i} (y_i- \hat{y_i})= 0 i=1Ny^i(yiyi^)=0

Proof:
∑ i = 1 N y ^ i ( y i − y i ^ ) = ∑ i = 1 N ( β ^ 0 + ∑ j = 1 p β ^ j x i , j ) ( y i − y i ^ ) = β ^ 0 ∑ i = 1 N ( y i − y i ^ ) + ∑ j = 1 p β ^ j ∑ i = 1 N x i , j ( y i − y i ^ ) \sum_{i=1}^{N} \hat{y}_{i} (y_i- \hat{y_i}) \\ = \sum_{i=1}^{N} (\hat{\beta}_{0} + \sum_{j=1}^{p} \hat{\beta}_{j} x_{i,j} )(y_i- \hat{y_i}) \\ =\hat{\beta}_{0} \sum_{i=1}^{N} (y_i- \hat{y_i}) + \sum_{j=1}^{p} \hat{\beta}_{j} \sum_{i=1}^{N} x_{i,j} (y_i- \hat{y_i}) \\ i=1Ny^i(yiyi^)=i=1N(β^0+j=1pβ^jxi,j)(yiyi^)=β^0i=1N(yiyi^)+j=1pβ^ji=1Nxi,j(yiyi^)
由引理1与引理2,即可证得:
∑ i = 1 N y ^ i ( y i − y i ^ ) = 0 \sum_{i=1}^{N} \hat{y}_{i} (y_i- \hat{y_i}) = 0 i=1Ny^i(yiyi^)=

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值