文章目录
1. 前文回顾
在上一篇文章中,我们介绍了参数的显著性检验——t检验,和模型的显著性检验——F检验(详情请见:多元线性回归模型(五)——参数与模型的显著性检验:t检验与F检验)
现在我们来考虑一个新问题:假设一现在两个模型都可以用来拟合因变量,且每个模型的各个参数均显著,那么这两个模型哪个更好呢?有什么指标可以用来比较两个模型孰优孰劣呢?那就让我们带着这个问题继续探索吧。
2. 一些引理与离差平方和分解定理(可略)
我将本文需要的一些引理与相关证明放在这一章节中,其中最重要的要属离差平方和分解定理。不感兴趣的小伙伴可以跳过本章的证明过程。
2.1 引理1
【引理1】 样本真值与模型拟合值的残差和为0,即:
∑ i = 1 N ( y i − y i ^ ) = 0 \sum_{i=1}^{N} ( y_i- \hat{y_i})= 0 i=1∑N(yi−yi^)=0
Proof:
根据对 β0 的偏导数为0,即可得证。
Q.E.D.
2.2 引理2
【引理2】样本真值与模型拟合值的残差和为0,即:
∀ j ∈ { 1 , 2 , . . . , p } , ∑ i = 1 N x i j ( y i − y i ^ ) = 0 \forall j \in \{1, 2, ..., p \}, \ \ \ \sum_{i=1}^{N} x_{ij} (y_i- \hat{y_i})= 0 ∀j∈{
1,2,...,p}, i=1∑Nxij(yi−yi^)=0
Proof:
根据对 βi 的偏导数为0,即可得证。
Q.E.D.
2.3 引理3
【引理3】
∑ i = 1 N y ^ i ( y i − y i ^ ) = 0 \sum_{i=1}^{N} \hat{y}_{i} (y_i- \hat{y_i})= 0 i=1∑Ny^i(yi−yi^)=0
Proof:
∑ i = 1 N y ^ i ( y i − y i ^ ) = ∑ i = 1 N ( β ^ 0 + ∑ j = 1 p β ^ j x i , j ) ( y i − y i ^ ) = β ^ 0 ∑ i = 1 N ( y i − y i ^ ) + ∑ j = 1 p β ^ j ∑ i = 1 N x i , j ( y i − y i ^ ) \sum_{i=1}^{N} \hat{y}_{i} (y_i- \hat{y_i}) \\ = \sum_{i=1}^{N} (\hat{\beta}_{0} + \sum_{j=1}^{p} \hat{\beta}_{j} x_{i,j} )(y_i- \hat{y_i}) \\ =\hat{\beta}_{0} \sum_{i=1}^{N} (y_i- \hat{y_i}) + \sum_{j=1}^{p} \hat{\beta}_{j} \sum_{i=1}^{N} x_{i,j} (y_i- \hat{y_i}) \\ i=1∑Ny^i(yi−yi^)=i=1∑N(β^0+j=1∑pβ^jxi,j)(yi−yi^)=β^0i=1∑N(yi−yi^)+j=1∑pβ^ji=1∑Nxi,j(yi−yi^)
由引理1与引理2,即可证得:
∑ i = 1 N y ^ i ( y i − y i ^ ) = 0 \sum_{i=1}^{N} \hat{y}_{i} (y_i- \hat{y_i}) = 0 i=1∑Ny^i(yi−yi^)=