logistic回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。例如,探讨引发疾病的危险因素,并根据危险因素预测疾病发生的概率等。以胃癌病情分析为例,选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群必定具有不同的体征与生活方式等。因此因变量就为是否胃癌,值为“是”或“否”,自变量就可以包括很多了,如年龄、性别、饮食习惯、幽门螺杆菌感染等。自变量既可以是连续的,也可以是分类的。然后通过logistic回归分析,可以得到自变量的权重,从而可以大致了解到底哪些因素是胃癌的危险因素。同时根据该权值可以根据危险因素预测一个人患癌症的可能性。
它通常包含四类主要的分析
1. 二分类Logistic回归
2.有序多分类Logistic回归
3. 无序多分类Logistic回归
4. 1:m匹配病例对照Logistic回归
那么今天我们来看一下简单的二元Logistic回归,具体的分析步骤让我们来看一下吧~
点击【分析】-【回归】-【二元logistic】得到分析结果