logistic回归_SPSS教程logistic回归分析

本文介绍了logistic回归分析在数据挖掘和疾病预测中的应用,以胃癌为例阐述了其在疾病危险因素研究中的作用。内容涵盖二分类Logistic回归的基本分析步骤,强调了模型评价指标和预测概率的重要性,并讨论了变量筛选方法的策略,如向后和向前法。
摘要由CSDN通过智能技术生成

logistic回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。例如,探讨引发疾病的危险因素,并根据危险因素预测疾病发生的概率等。以胃癌病情分析为例,选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群必定具有不同的体征与生活方式等。因此因变量就为是否胃癌,值为“是”或“否”,自变量就可以包括很多了,如年龄、性别、饮食习惯、幽门螺杆菌感染等。自变量既可以是连续的,也可以是分类的。然后通过logistic回归分析,可以得到自变量的权重,从而可以大致了解到底哪些因素是胃癌的危险因素。同时根据该权值可以根据危险因素预测一个人患癌症的可能性。

它通常包含四类主要的分析

1. 二分类Logistic回归
2.有序多分类Logistic回归
3. 无序多分类Logistic回归
4. 1:m匹配病例对照Logistic回归

那么今天我们来看一下简单的二元Logistic回归,具体的分析步骤让我们来看一下吧~

  1. 点击【分析】-【回归】-【二元logistic】得到分析结果

    904fd141f8a8e8d7a2a0501ff3005f21.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值