吴恩达-深度学习微课(第一课)

部分内容记录:

吴恩达-深度学习微课-第二课

序号内容
1.4为什么深度学习会兴起?1、data_scale 与performance的二维图形,对于ml 当数据规模达到一定量后,算法性能表现不再上升,比较平稳;
2、但是nn可以有更大的性能表现,随着训练一个更大规模的NN
3、
“scale drives deep learning progress":这里的scale 包含两部分:数据规模、网络规模
4、在算法性能上升区域,是很难说哪个算法更好的,可能跟程序员对数据处理等相关;
5、神经网络的激活函数一般采用修正线性单元(Relu)而非sigmod,因为在sigmod函数表现的两端,梯度接近于0,当采用梯度下降算法时,参数就会学习的很慢,relu在x大于0时梯度不会为0,可以使学习速度更快

 

2.12分分类1、关于1张图片的表示,举例一张图片64*64像素,则1张图片表示为1列维的64*64*3的特征向量;而整个样本集表示为大写X,其中在神经网络训练中样本按列堆积表示,即为(nx,m);对应的Y表示为1行维的向量

2.3logistic回归损失函数1、sigmod 函数公式 1/(1+e^(-z))
2、逻辑回归的损失函数没有采用误差平方的形式,因为这种表示在优化的时候是非凸函数,采用梯度下降算法的话找到的是局部最优点
3、逻辑回归损失函数形式见下图片:

2.4梯度下降法1、将"梯度下降"这个看起来高深的名词转换为最直观的认识:w:=w-α*(df(w)/d(w)),文字即 将w按照导数值变化更新(梯度、导数、斜率);w 有一个初始值,也就有这一点的梯度值,也就产生了下一个w的值,如此迭代;图片加深印象
2.5导数df(w)/d(w),也就是表示函数f以w作为未知数求导,得到的一个函数式子。因此如果是一次函数求导得到的是恒定值,其他复杂函数就不是了

 

2.8计算图求导数1、以J=3*(a+b*c)举例子,要计算这个式子需要分为3个步骤,通过从左到右可以计算J(前向传播);通过从右到左可以计算出来a\b\c的导数(反向传播)
2、每一步的反向传播极大可能和当前样本的输入特征数据计算相关,也就是说反向传播得到的求导公式里包含当前样本的值的情况,所以就得先前向、再后向

 

2.10m个样本的logistic中的梯度下降假设只有2个特征:
1、单个样本的梯度计算:根据loss函数,计算单个样本的w1,w2,b的梯度值(导数值)

2、m个样本的梯度计算:1次迭代,就是要把m个样本的关于w1,w2的梯度值都计算,然后取平均,更新一次w1,w2,b的值

 

2.11向量化1、显式消除for循环,实现快速计算的艺术
2、向量化逻辑回归、及梯度输出

 

2.18逻辑回归成本函数解释吴恩达深度学习 —— 2.18(选修)逻辑回归损失函数的解释_诗与远方-CSDN博客

3.3计算神经网络的输出1、计算层数通常是从隐含层开始1,输出层也算;
2、每一层的每一个隐藏单元就类似于逻辑回归完成的2步骤:z的计算、a的计算

3、神经网络就是在不断重复逻辑回归的2步

 

3.6激活函数1、sigmod:几乎不用,仅当在输出层做2分类的时候,因为想得到[0,1]的输出;几乎不用是因为tanh几乎在各方面强于sigmod;
2、tanh:[-1,1],因为其平均值为0,而不是sigmod的0.5,所以有数据中心化的作用,表现强于sigmod;公式见下图
3、relu:最常用的激活函数,因其梯度不会像sigmod、tanh一样接近于0,可以使得算法计算更快;公式见下图

3.11随机初始化1、逻辑回归的初始化可以全部设为0,图形是凸函数,无论从哪一点初始化都可以梯度下降找到最优点
2、神经网络如果全部初始化为0,梯度下降就失效了;原因是:不同于逻辑回归相当于1个输出单元完成2个步骤的计算,而神经网络1个隐藏层就有多个神经单元,如果把每一个神经单元的W初始化为0,那么根据公式转置W*X+b 将全部为0,这样网络就有对称性了,再多的隐藏单元也跟1个神经单元的计算没什么区别了;
3、所以一般的情况是,w进行随机初始化,b可以随机初始化,也可以初始化为0影响不大

4.3核对矩阵的维数核对矩阵的维数,可帮助排除程序错误
1、z,a,b的维数一致,跟当前层的单元数相关
2、w的维数跟当前层及前一层的单元数相关

4.7参数VS超参数超参数称之为控制参数的参数,例如神经网络里w和b是参数,是网络结构本身的参数,但是学习率、隐藏层数、每层隐藏单元数、迭代次数等是超参数,是可调节的参数

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值