opencv与python_系统学习:使用OpenCV和Python实现的机器学习

机器学习的味道

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/01.00-A-Taste-of-Machine-Learning.ipynb

在OpenCV中使用数据

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/02.00-Working-with-Data-in-OpenCV.ipynb

使用Python的NumPy软件包处理数据

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/02.01-Dealing-with-Data-Using-Python-NumPy.ipynb

在Python中加载外部数据集

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/02.02-Loading-External-Datasets-in-Python.ipynb

使用Matplotlib可视化数据

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/02.03-Visualizing-Data-Using-Matplotlib.ipynb

使用OpenCV的TrainData容器处理数据

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/02.05-Dealing-with-Data-Using-the-OpenCV-TrainData-Container-in-C%2B%2B.ipynb

使用Python的NumPy软件包处理数据

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/02.01-Dealing-with-Data-Using-Python-NumPy.ipynb

在Python中加载外部数据集

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/02.02-Loading-External-Datasets-in-Python.ipynb

使用Matplotlib可视化数据

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/02.03-Visualizing-Data-Using-Matplotlib.ipynb

使用OpenCV的TrainData容器处理数据

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/02.05-Dealing-with-Data-Using-the-OpenCV-TrainData-Container-in-C%2B%2B.ipynb

监督学习的第一步

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/03.00-First-Steps-in-Supervised-Learning.ipynb

用评分功能测量模型性能

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/03.01-Measuring-Model-Performance-with-Scoring-Functions.ipynb

了解k-NN算法

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/03.02-Understanding-the-k-NN-Algorithm.ipynb

使用回归模型预测持续成果

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/03.03-Using-Regression-Models-to-Predict-Continuous-Outcomes.ipynb

应用拉索和岭回归

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/03.04-Applying-Lasso-and-Ridge-Regression.ipynb

使用Logistic回归分类虹膜物种

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/03.05-Classifying-Iris-Species-Using-Logistic-Regression.ipynb

用评分功能测量模型性能

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/03.01-Measuring-Model-Performance-with-Scoring-Functions.ipynb

了解k-NN算法

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/03.02-Understanding-the-k-NN-Algorithm.ipynb

使用回归模型预测持续成果

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/03.03-Using-Regression-Models-to-Predict-Continuous-Outcomes.ipynb

应用拉索和岭回归

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/03.04-Applying-Lasso-and-Ridge-Regression.ipynb

使用Logistic回归分类虹膜物种

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/03.05-Classifying-Iris-Species-Using-Logistic-Regression.ipynb

代表数据和工程特性

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/04.00-Representing-Data-and-Engineering-Features.ipynb

预处理数据

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/04.01-Preprocessing-Data.ipynb

减少数据的维度

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/04.02-Reducing-the-Dimensionality-of-the-Data.ipynb

代表分类变量

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/04.03-Representing-Categorical-Variables.ipynb

表示文本特征

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/04.04-Represening-Text-Features.ipynb

代表图像

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/04.05-Representing-Images.ipynb

预处理数据

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/04.01-Preprocessing-Data.ipynb

减少数据的维度

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/04.02-Reducing-the-Dimensionality-of-the-Data.ipynb

代表分类变量

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/04.03-Representing-Categorical-Variables.ipynb

表示文本特征

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/04.04-Represening-Text-Features.ipynb

代表图像

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/04.05-Representing-Images.ipynb

使用决策树进行医学诊断

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/05.00-Using-Decision-Trees-to-Make-a-Medical-Diagnosis.ipynb

建立你的第一决策树

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/05.01-Building-Your-First-Decision-Tree.ipynb

使用决策树诊断乳腺癌

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/05.02-Using-Decision-Trees-to-Diagnose-Breast-Cancer.ipynb

使用决策树回归

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/05.03-Using-Decision-Trees-for-Regression.ipynb

建立你的第一决策树

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/05.01-Building-Your-First-Decision-Tree.ipynb

使用决策树诊断乳腺癌

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/05.02-Using-Decision-Trees-to-Diagnose-Breast-Cancer.ipynb

使用决策树回归

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/05.03-Using-Decision-Trees-for-Regression.ipynb

用支持向量机检测行人

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/06.00-Detecting-Pedestrians-with-Support-Vector-Machines.ipynb

实施您的第一支持向量机

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/06.01-Implementing-Your-First-Support-Vector-Machine.ipynb

检测野外行人

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/06.02-Detecting-Pedestrians-in-the-Wild.ipynb

附加SVM练习

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/06.03-Additional-SVM-Exercises.ipynb

实施您的第一支持向量机

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/06.01-Implementing-Your-First-Support-Vector-Machine.ipynb

检测野外行人

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/06.02-Detecting-Pedestrians-in-the-Wild.ipynb

附加SVM练习

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/06.03-Additional-SVM-Exercises.ipynb

用贝叶斯学习实现垃圾邮件过滤器

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/07.00-Implementing-a-Spam-Filter-with-Bayesian-Learning.ipynb

实现我们的第一个贝叶斯分类器

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/07.01-Implementing-Our-First-Bayesian-Classifier.ipynb

分类电子邮件使用朴素贝叶斯

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/07.02-Classifying-Emails-Using-Naive-Bayes.ipynb

实现我们的第一个贝叶斯分类器

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/07.01-Implementing-Our-First-Bayesian-Classifier.ipynb

分类电子邮件使用朴素贝叶斯

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/07.02-Classifying-Emails-Using-Naive-Bayes.ipynb

用无监督学习发现隐藏的结构

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/08.00-Discovering-Hidden-Structures-with-Unsupervised-Learning.ipynb

了解k均值聚类

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/08.01-Understanding-k-Means-Clustering.ipynb

使用k-Means压缩彩色图像

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/08.02-Compressing-Color-Images-Using-k-Means.ipynb

使用k-Means分类手写数字

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/08.03-Classifying-Handwritten-Digits-Using-k-Means.ipynb

实施聚集层次聚类

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/08.04-Implementing-Agglomerative-Hierarchical-Clustering.ipynb

了解k均值聚类

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/08.01-Understanding-k-Means-Clustering.ipynb

使用k-Means压缩彩色图像

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/08.02-Compressing-Color-Images-Using-k-Means.ipynb

使用k-Means分类手写数字

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/08.03-Classifying-Handwritten-Digits-Using-k-Means.ipynb

实施聚集层次聚类

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/08.04-Implementing-Agglomerative-Hierarchical-Clustering.ipynb

使用深度学习分类手写数字

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/09.00-Using-Deep-Learning-to-Classify-Handwritten-Digits.ipynb

了解感知器

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/09.01-Understanding-Perceptrons.ipynb

在OpenCV中实现多层感知器

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/09.02-Implementing-a-Multi-Layer-Perceptron-in-OpenCV.ipynb

认识深度学习

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/09.03-Getting-Acquainted-with-Deep-Learning.ipynb

在OpenCV中培训MLP以分类手写数字

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/09.04-Training-an-MLP-in-OpenCV-to-Classify-Handwritten-Digits.ipynb

训练深层神经网络使用Keras分类手写数字

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/09.05-Training-a-Deep-Neural-Net-to-Classify-Handwritten-Digits-Using-Keras.ipynb

了解感知器

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/09.01-Understanding-Perceptrons.ipynb

在OpenCV中实现多层感知器

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/09.02-Implementing-a-Multi-Layer-Perceptron-in-OpenCV.ipynb

认识深度学习

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/09.03-Getting-Acquainted-with-Deep-Learning.ipynb

在OpenCV中培训MLP以分类手写数字

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/09.04-Training-an-MLP-in-OpenCV-to-Classify-Handwritten-Digits.ipynb

训练深层神经网络使用Keras分类手写数字

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/09.05-Training-a-Deep-Neural-Net-to-Classify-Handwritten-Digits-Using-Keras.ipynb

将不同的算法合并成一个合奏

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/10.00-Combining-Different-Algorithms-Into-an-Ensemble.ipynb

了解组合方法

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/10.01-Understanding-Ensemble-Methods.ipynb

将决策树组合成随机森林

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/10.02-Combining-Decision-Trees-Into-a-Random-Forest.ipynb

使用随机森林进行人脸识别

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/10.03-Using-Random-Forests-for-Face-Recognition.ipynb

实施AdaBoost

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/10.04-Implementing-AdaBoost.ipynb

将不同的模型组合成投票分类器

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/10.05-Combining-Different-Models-Into-a-Voting-Classifier.ipynb

了解组合方法

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/10.01-Understanding-Ensemble-Methods.ipynb

将决策树组合成随机森林

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/10.02-Combining-Decision-Trees-Into-a-Random-Forest.ipynb

使用随机森林进行人脸识别

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/10.03-Using-Random-Forests-for-Face-Recognition.ipynb

实施AdaBoost

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/10.04-Implementing-AdaBoost.ipynb

将不同的模型组合成投票分类器

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/10.05-Combining-Different-Models-Into-a-Voting-Classifier.ipynb

使用超参数调整选择正确的模型

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/11.00-Selecting-the-Right-Model-with-Hyper-Parameter-Tuning.ipynb

评估模型

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/11.01-Evaluating-a-Model.ipynb

了解交叉验证,Bootstrapping和McNemar的测试

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/11.02-Understanding-Cross-Validation-Bootstrapping-and-McNemar's-Test.ipynb

使用网格搜索调整超参数

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/11.03-Tuning-Hyperparameters-with-Grid-Search.ipynb

链接算法一起形成管道

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/11.04-Chaining-Algorithms-Together-to-Form-a-Pipeline.ipynb

评估模型

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/11.01-Evaluating-a-Model.ipynb

了解交叉验证,Bootstrapping和McNemar的测试

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/11.02-Understanding-Cross-Validation-Bootstrapping-and-McNemar's-Test.ipynb

使用网格搜索调整超参数

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/11.03-Tuning-Hyperparameters-with-Grid-Search.ipynb

链接算法一起形成管道

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/11.04-Chaining-Algorithms-Together-to-Form-a-Pipeline.ipynb

结束语

https://github.com/mbeyeler/opencv-machine-learning/blob/master/notebooks/12.00-Wrapping-Up.ipynb

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值