测度定义_实分析: 测度与积分

这篇博客概述了实分析中的测度和积分概念,包括可测空间、测度的定义、Radon测度、外侧度以及如何构造测度。通过举例说明了Lebesgue测度,并介绍了向量值的Bochner积分。文章还提到了不同类型的收敛和相关定理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

又是提纲啦. 因为下学期要开始学实变了, 以前了解过一点, 现在整理一下学过的内容. 这次写的就像书开头的 introduction 一样, 尝试一下这样做笔记~目前还不完整, 寒假再更.

实分析方面我主要的参考书是 Folland, 叙述的主线也是按 Folland 展开的. 同时 Amann 对 Lebesgue 测度的介绍更详细一些, Lang 全程处理 Banach 空间版本, 周民强有一些偏数学分析的内容, 所以都有参考.


可测空间

测度是定义在可测集上的. 类似于拓扑中的开集, 抽象的可测集是由在某些集合操作下封闭的子集族给出的. 通常有集代数集环两种处理方式, 区别在于是否将全集

算作可测. 它们都有一些细节上的问题. 我们选择用集代数叙述.

我们通常关心的集代数即关于(有限/可数)并集/补集补集封闭的子集族. 一个集合配上一个 σ-代数就称为一个可测空间. 与拓扑完全类似地, 我们可以定义任意子集族生成的集代数等, 可测函数, 可测空间的子空间, 乘积空间, 等等, 并得到一些类似的简单结论, 例如可测函数的复合也是可测的. 这部分与点集拓扑完全平行.

一个技术上的定义是集半代数, 它关于交封闭且满足: 任意两个集半代数中集合的相对补集可写成原集半代数中一些集合的不交并. 集半代数生成的集代数由那些可写成原集半代数中集合的不交并的集合组成.

可测空间的一个重要的例子是拓扑空间. 拓扑空间的开集族生成的 σ-代数称为 Borel 代数. 注意拓扑可以取任意交/并, 但 σ-代数至多取可数交/并, 所以有些命题仅对第二可数空间成立, 例如: 乘积拓扑生成的 Borel 代数等于 Borel 代数的乘积.

测度

测度给每个可测集 σ-可加地赋予一个值, 这样就构成了一个测度空间. 在最一般的情况下, 这里的值可以是在 Banach 空间上, 但我们暂时只考虑在

上取值的
正测度. 这里我们得到了测度的简单性质如连续性, 对应积分的 Fatou 引理. 后面我们会看到, 事实上积分与测度之间有着深刻的关系.

值得一提的是 σ-有限的测度. 后面我们定义 Bochner 积分时会看到它的一个用处是避免

出现, 这里
是非零向量. 许多定理也需要这个条件, 它的好处是把问题转化为测度有限的情况.

零测集是测度论对的严格表述, 零测集足够多的测度叫做完备的. 任意测度可以做完备化, 这会带来一些技术上的好处, 例如我们经常说某些不好的点是零测的, 这时就不必担心不好的点构成的集合是否可测.

Radon 测度

定义在 Hausdorff 空间的 Borel 代数上的局部有限 (每个点有邻域测度有限), 外正则 (任意集合的测度被外包开集逼近), 内正则 (任意集合的测度被内含紧集逼近) 的测度称为 Radon 测度.

待更.

构造测度的工具

外侧度是定义在整个

上的次 σ-可加单调函数. 给定
(其中
有可数子集覆盖
), 可通过
定义外测度.

具体的测度通常由外测度与 Carathéodory 条件给出: 对任意

,
.
Carathéodory 延拓定理断言这样定义的可测集给出了一个完备的测度空间.

我们还能从更原始的材料出发. 定义在集半代数上的(σ-)可加函数可唯一地延拓到其生成的集代数上的(σ-)可加函数. 定义在集代数上的 σ-可加函数称为预测度. 如上文所述, 它诱导出一个外测度. Hahn–Kolmogorov 延拓定理断言, 这个外测度在 Carathéodory 意义下将预测度延拓到原集代数生成的 σ-代数上的一个测度, 且当预测度 σ-有限时这样的延拓是唯一的.

定理 (Hahn–Kolmogorov).
上的集代数,
上的预测度,
是其诱导的外测度,
生成的 σ-代数. 设
-可测集的集合,
.

(i)
. 即
可延拓到
上的测度.

(ii) 若
上的测度, 则
, 若
则等号成立.

(iii) 若
是 σ-有限的, 则
唯一地延拓到
上的测度.

(iv)
的完备化的饱和.

例子

为右连续递增函数.
上形如
的区间构成集半代数, 定义
, 其诱导的唯一 Borel 测度称为
Lebesgue–Stieltjes 测度, 其定义域是 Borel 代数的完备化. 类似可定义
上的
Lebesgue 测度. 它们都是 Radon 测度.
记号. 记
上的 Borel 代数,
为 Lebesgue 可测集的 σ-代数.

在不记常数倍意义下, Lebesgue 测度是

上唯一局部有限且平移不变的测度.

待更.


下面被积函数定义域是测度空间, 值域是 Banach 空间或

, 配上 Borel 代数. 约定
. 这里
应理解成向量, 而
为测度, 意即: 若函数值为
, 定义域的测度再大, 它的积分也只能是
. 我们可能会假设测度是完备的, 这样就可以在许多命题中加入 a.e.

Lebesgue 积分的想法很容易解释清楚. 可测集上示性函数的有限线性组合称为简单函数, 它们的积分的定义是显然的. 我们可以取

-Cauchy 的简单函数列 (a.e.) 逐点逼近某些函数, 这些函数的积分就定义为简单函数积分的极限. 换句话说, 简单函数组成的线性空间上有积分作为线性泛函并给出
范数, 我们将其完备化并将积分延拓到新的空间.

值的 Lebesgue 积分

先考虑

的情况. 此时可积函数几乎就是可测函数. 可测函数关于取可数
,
,
,
等等封闭. 若避开不定式, 则可测函数关于四则运算封闭, 这里用到
第二可数.

我们先定义非负可测函数的积分. 正是这一限制使得我们不会碰到

的问题, 因为积分中只做加法. 任意非负可测函数都可被非负简单函数从下方逐点逼近, 我们就取一列这样的简单函数并定义其积分为这列简单函数积分的上确界. 或者我们也可以定义积分为比它小的所有简单函数积分的上确界. 良定性由下面的单调收敛定理保证. 注意积分有限的函数取
值的点为零测集, 取非零值的点为 σ-有限集.

一般的

-值函数拆成正部和负部即可定义积分, 这里需要避免
. 通常的做法是只考虑绝对值积分有限的函数, 并称这样的函数
Lebesgue 可积. 我们由此得到空间
, 它的泛函性质在后面会更详细地讨论.

这里三个重要的定理分别是: 对非负可测函数说的 Beppo Levi 的单调收敛定理 (递增函数列

) 和
Fatou 引理 (
) , 对可积函数说的
Lebesgue 控制收敛定理 (被可积函数逐点控制时
). 强大的控制收敛为我们提供了各式各样的交换极限的定理.

向量值的 Bochner 积分

待更.

其他

收敛方式有很多: (a.e.)逐点收敛, 一致收敛, 几乎一致收敛,

-收敛, 依测度收敛.
(i)
-收敛
依测度收敛
有子列 a.e. 逐点收敛且几乎一致收敛.

(ii) (Egorov) 有限测度空间上 a.e. 逐点收敛
几乎一致收敛.

(iii) 几乎一致收敛
a.e. 逐点收敛且依测度收敛.

待更.


References

Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications

Herbert Amann & Joachim Escher, Analysis III

Serge Lang, Real and Functional Analysis

A. N. Kolmogorov & S. V. Fomin, 函数论与泛函分析初步

周民强, 实变函数论

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值