测度的延拓

本文深入探讨了测度的延拓概念,从环R上的测度开始,通过引入外测度μ∗,阐述了其非负性、单调性、可列不等式等性质。通过Caratheodory条件,确定了μ∗-可测集形成的σ-环R∗,并证明了μ∗是R∗上的测度,且在特定条件下具有完全性。整个过程揭示了测度理论中的重要步骤和性质。
摘要由CSDN通过智能技术生成

测度的延拓

    任何一个给定环 R \bm{R} R上的测度 μ \mu μ必可延拓到某个 σ \sigma σ- 环 R ∗ ⊂ S ( R ) \bm{R}^{*}\subset\bm{S(R)} RS(R)上,成为 R ∗ \bm{R}^{*} R上的测度。
    外测度 设 X X X是基本空间, R \bm{R} R X X X的环,下面先引进一个包含 R \bm{R} R上的 σ \sigma σ- 环: H ( R ) \bm{H(R)} H(R)表示能用 R \bm{R} R中的一列元素(即 X X X中某些子集的序列)加以覆盖的子集全体所称的类,即
H ( R ) = { E ∣ E ⊂ X , \bm{H(R)}=\{E\mid E\subset X, H(R)={ EEX,存在 E i ∈ R ( i = 1 , 2 , . . . ) 使 E ⊂ ⋃ i = 1 n E i } E_{i}\in\bm{R} (i=1,2,...)使E\subset \bigcup_{i=1}^{n}E_{i}\} EiR(i=1,2,...)使Ei=1nEi}
    引理 1   对任何环 R \bm{R} R,必定 R ⊂ H ( R ) \bm{R}\subset \bm{H(R)} RH(R);当 E ∈ H ( R ) E\in \bm{H(R)} EH(R)时, E E E的任何子集F必定也属于 H ( R ) \bm{H(R)} H(R); H ( R ) \bm{H(R)} H(R)必定是 σ \sigma σ- 环。(提示:只需要证明 H ( R ) \bm{H(R)} H(R)对可列和的封闭性。)
    引理 2   由环 R \bm{R} R上的测度 μ \mu μ所引出的外测度 μ ∗ \mu^{*} μ有下列性质:
    (i)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值