rpn产生proposals_论文阅读笔记二十六:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Netwo...

论文源址:https://arxiv.org/abs/1506.01497

tensorflow代码:https://github.com/endernewton/tf-faster-rcnn

摘要

目标检测依赖于区域proposals算法对目标的位置进行预测。SPPnet和Fast R-CNN已经减少了检测网络的运行时间。然而proposals的计算仍是一个重要的瓶颈。本文提出了一个Region Proposal Network(RPN),在检测网路中共享卷积网络得到的整张图片的feature map。RPN是全卷积网络可以同时预测目标物的边界和每个位置出目标的分数。RPN是进行端到端的训练用于产生高质量的候选区域。后送入Fast R-CNN进行检测。该文通过共享卷积将RPN与Fast R-CNN进行融合为一个整体。基于注意力机制,RPN指明网络需要注意观察的地方。

介绍

目标检测的先进方法包含一系列的区域框,和基于区域的卷积网络。由于proposals之间共享卷积的操作,使基于区域的卷积方法减少大量的计算资源。Fast R-CNN在忽略region proposal上的时间消耗外,可以近似实时的速率进行检测。proposals的计算是测试时占用大部分时间的主要部分。

候选区域的生成主要依赖于较简单的特征和推理方法。Selective Search基于较低级的特征融合超像素的方式生成proposals。但SS的速度仍然很慢,在CPU上每张图需要2s时间,EdgeBoxes能够生成较高质量的proposal,同时,速度上也有一定的保证,处理每张图的时间为0.2s。然而,region proposal的生成仍消耗与检测网络相同的时间。

该文在生成候选区域方法上做了一些改进,用深度卷积网络来获得proposals。可以大幅度提升计算时间。RPN通过共享卷积使测试时,时间的占用十分少。基于区域的检测器可以被卷积特征及逆行利用,用于产生region proposals。在卷积网络的顶部通过增加一些额外的卷积层构建RPN用于同时回归区域的边界和在预测该区域类别的分数。因此RPN为全卷积网络,同时可以进行端到端的训练用于产生检测区域框。

RPN通过一个较大范围的尺寸与比例系数来高效的预测候选区域。以前的方法是使用图像金字塔,和不同大小的卷积核进行处理,本文提出了不同尺寸与比例系数组合得到的多个anchor 用于生成proposal作为参考,提高了测试的速度。如下图,

为了将RPN与Fast R-CNN融合在一起,本文,将proposals固定,交替的微调区域候选框生成任务和目标检测部分的网络。这样可以快速收敛,同时,卷积特征在两个任务之间共享可以实现网络的整合。

相关工作

目标候选区域生成的方法有:基于像素融合的SS,CPMC,MCG,基于滑动窗的EdgeBox等。目标区域框的被当作模型外的一部分,像基于SS的R-CNN和Fast R-CNN等。

基于深度网络的目标检测:R-CNN训练卷积网络用于对proposals进行前景/背景的分类。R-CNN主要作为一个分类器。并不进行目标框的预测,除了通过框的回归进行增强。其准确率主要依赖于proposal模型的表现。OverFeat基于全连接层对单个目标进行框坐标的预测。全连接层后接卷积层用于目标不同类别的确定。MultiBox方法从网络中生成区域候选框,该网络中的全连接层同时预测多个类别不确定的框。得到的类别不确定的框作为R-CNN的proposals。相比本文的全卷积机制,MultiBox网络应用在一个固定尺寸的输入图片上。同时,MultiBox在proposal和检测网络之间并未共享特征。

Faster R-CNN

该模型主要包含两个部分:(1)用于生成区域候选框的深度全卷积网络(2)Fast R-CNN用于作为检测器。 模型为一个单独一个整体用于目标检测。结构如下。

region proposal networks

RPN将任意尺寸大小的图片作为输入,输出一系列的矩形目标框,每一个框都有一个类别的分数。该文使用一个全卷积网络实现上述操作。由于要想与fast rcnn实现共享计算,假定两个模型有一个公共的卷积层。

为了生成区域候选框,在卷积层最后一层feature map上滑动一个小的网络。该小型网络将输入的卷积特征映射到一个nxn的空间窗口作为输入。每一个滑动窗口都映射为一个更低维的特征。得到的特征送入两个分支中,一个用于框分类,另一个用于框回归。mi-ni 网络执行滑动窗口形式,所有空间位置都共享全连接层。该结构可以看作是一个nxn的卷积网络后接两个1x1的卷积层。

Anchors

在滑动窗的每个位置,对多个候选区域同时进行预测,对于每个位置处,最大概率为目标proposal的个数记作k。因此,该部分模型输出为4xk用于编码k个框的坐标,和2xk个分数值用于表示k个框,前景/背景的概率。将kproposal叫做anchors。锚点处于滑动窗口的中心,并按照一定的尺寸及比例系数进行缩放。本文默认采用三种尺寸和比例系数,最终得到9个anchors在每个滑动位置处。对于一个大小为WxH的feature map,大约产生WHk个锚。

锚的平移不变性

锚的一个重要属性是平移不变性。如果图片中的物体发生了偏移,则proposal应该也进行平移,而相同的函数可以在预测出任意位置的proposal。

而Multibox是基于k-means来生成800个anchors,不具有平移不变性。同时,该方法可以减少大量的参数。并在小数据集上较少风险会产生过拟合。

多尺寸的锚作为回归准则

锚可以解决多尺寸问题(通过尺寸与比例系数)。本文基于不同尺寸的锚进行分类与回归操作。输入图片,与卷积核的尺寸都是固定的。

损失函数

针对RPN的训练,对每个anchor进行两类标记,前景/背景(二分类)。按两种方式对proposal进行正类标记:

(1)将与一个ground Truth IOU值最大的proposal/proposals标记为正类。

(2)一个anchor与任意IOU值高于0.7的标记为正类。

值得注意的是,一个ground truth 可以对用多个anchors。上述第二种方式无法有效的确定正样本。采用第一种方式进行标记,在少数情况下,第二种方式无法得到正样本。将与任意ground truth IOU的值低于0.3的标记为负样本。其中,既不是正样本,也不是负样本的proposal不考虑在训练目标范围内。

对于单张图片的损失函数定义如下:i代表一个batch中一个anchor的序列,pi代表预测为目标的概率,t_i为预测框的坐标,而t*代表positivate anchor的ground truth 框的坐标。

分类采样log损失,对于回归损失,采用L1平滑处理,按如下定义,通过设置k个权重不共享的锚,虽然,特征图相同,但可以预测出不同尺寸的bounding box。

RPN网络的训练

RPN可以基于反向传播与SGD进行端到端的训练。每张图包含许多正负样本。因此会训练所有样本,但由于负样本的数量占大多数,因此,会导致结果偏向于负样本。对一张图片随机采样256个样本,如果,正样本个数小于128个,则会用少量的负样本进行填充。

RPN与Fast R-CNN之间的共享特征

该文讨论了共享特征训练的三种方式:(1)交替训练:首先训练RPN,然后,用得到的proposals训练fast R-CNN,通过fast R-CNN调试后的网络初始化RPN网络。整个过程重复进行,这是本文使用的训练方法。(2)近似联合训练:此方法中,RPN与Fast R-CNN合为一个网络。训练时,每次SGD迭代,前向过程生成proposal,在训练fast r-cnn时这些proposals可以被看作是固定的。反向传播过程正常执行,当经过共享卷积层时,对RPN 与Fast R-CNN的损失函数正常进行。但此方法的反向传播忽略了框坐标的优化。因此是近似的联合训练。(3)第三种方式是非近似的联合训练,将RPN预测框坐标的损失函数也要及进行考虑,但需要增加新的pooling 层和处理方法,超出本文的讨论范围。

整体训练过程分为四步:

I.训练RPN网络,用ImageNet 预训练模型进行初始化,并用proposal进行迭代训练。

II.基于Fast R-CNN的检测网络的训练,使用第一步RPN得到的proposals进行训练。仍用ImageNet的预训练模型进行初始化。目前,二者并未进行共享卷积的计算。

III.用检测网络初始化RPN网络训练,将共享卷积层固定,只对RPN中的层进行微调。

IV固定共享卷积层,对只属于Fast R-CNN的层进行微调。

存在一些彼此高度重复的RPN框,基于类别分数采用NMS处理。将NMS的IOU设置为0.7,每张图得到2000多个proposals。使用NMS并未降低准确率,同时会减少proposal的数量。

实验

Reference

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional networks for visual recognition,” in European Conference on Computer Vision (ECCV), 2014.

[2] R. Girshick, “Fast R-CNN,” in IEEE International Conference on Computer Vision (ICCV), 2015.

原文:https://www.cnblogs.com/fourmi/p/10090221.html

### 回答1: Faster R-CNN是一种基于区域建议网络(Region Proposal Networks,RPN)的物体检测算法,旨在实现实时物体检测。它通过预测每个区域是否含有物体来生成候选框,并使用卷积神经网络(CNN)来确定候选框中的物体类别。Faster R-CNN在提高检测精度的同时,也显著提高了检测速度。 ### 回答2: 在计算机视觉领域中,目标检测一直是热门研究的方向之一。近年来,基于深度学习的目标检测方法已经取得了显著的进展,并且在许多实际应用中得到了广泛的应用。其中,Faster R-CNN 是一种基于区域建议网络(Region Proposal Networks,RPN)的目标检测方法,在检测准确率和速度之间取得了很好的平衡,能够实现实时目标检测。 Faster R-CNN 的基本框架由两个模块组成:区域建议网络(RPN)和检测模块。RPN 主要负责生成候选目标框,而检测模块则利用这些候选框完成目标检测任务。具体来说,RPN 首先在原始图像上以多个尺度的滑动窗口为基础,使用卷积网络获取特征图。然后,在特征图上应用一个小型网络来预测每个位置是否存在目标,以及每个位置的目标边界框的坐标偏移量。最终,RPN 根据预测得分和位置偏移量来选择一部分具有潜在对象的区域,然后将这些区域作为候选框送入检测模块。 检测模块的主要任务是使用候选框来检测图像中的目标类别和位置。具体来说,该模块首先通过将每个候选框映射回原始图像并使用 RoI Pooling 算法来获取固定大小的特征向量。然后,使用全连接神经网络对这些特征向量进行分类和回归,以获得每个框的目标类别和精确位置。 相比于传统的目标检测方法,Faster R-CNN 具有以下优点:首先,通过使用 RPN 可以自动生成候选框,避免了手动设计和选择的过程;其次,通过共享卷积网络可以大大减少计算量,提高效率;最后,Faster R-CNN 在准确率和速度之间取得了很好的平衡,可以实现实时目标检测。 总之,Faster R-CNN 是一种高效、准确的目标检测方法,是深度学习在计算机视觉领域中的重要应用之一。在未来,随着计算机视觉技术的进一步发展,Faster R-CNN 这类基于深度学习的目标检测方法将会得到更广泛的应用。 ### 回答3: Faster R-CNN是一种结合了深度学习和传统目标检测算法的新型目标检测方法,旨在提高目标检测速度和准确率。Faster R-CNN采用了Region Proposal Network(RPN)来生成候选区域,并通过R-CNN网络对候选区域进行分类和定位。 RPN是一种全卷积神经网络,用于在图像中生成潜在的候选区域。RPN通常在卷积特征图上滑动,对每个位置预测k个候选区域和其对应的置信度得分。这样,对于输入图像,在不同大小和宽高比的Anchor上预测候选框,可以在计算上更有效率。 R-CNN网络利用卷积特征图作为输入,对RPN生成的候选区域进行分类和精确定位。与以前的目标检测方法相比,Faster R-CNN使用了共享卷积特征,使得整个检测网络可以端到端地进行训练和优化,缩短了训练时间,同时也更便于理解和改进。 Faster R-CNN不仅具有较高的准确性,还具有较快的检测速度。在各种基准测试中,Faster R-CNN与其他目标检测算法相比,都取得了优异的性能表现。总之,Faster R-CNN将目标检测引入了一个新的阶段,为实时目标检测提供了一个良好的基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值