
本文简单说说如何用Hilbert空间来描述Fourier级数。
Hilbert空间
完备的内积空间称作Hilbert空间,它是有限维Euclidean空间的推广,不局限于实数的情形和有限的维数,又不失完备性,意味着其上的Cauchy序列会收敛到此空间中的一点,因此微积分中的大部分概念可以推广到Hilbert空间中。
Hilbert空间具有距离、角、正交性等内积空间的特性,所谓的两个不同向量正交是指它们的内积为0,如在三维Euclidean空间中,互相垂直的向量之间是正交的。正交其实是垂直的抽象化说法。
Hilbert空间为基于任意正交系(orthogonal system)上的Fourier级数和Fourier变换提供了一种有效的表述方式,也就是说提供了一种语言来表述Fourier级数和Fourier变换,这首先要用到L2空间。
L2空间
平方可积表示该函数绝对值平方的积分是有限的。对于几乎处处相同的函数,也就是说如果两函数只在一个测度为0的集合上不相等,可以把这两函数当做在
Hilbert空间描述Fourier级数
用Hilbert空间的语言来说,设
如果向量集合
把这个定理应用到classical Fourier级数,可以验证trigonometric system中的函数:
是
且:
其中
当然三角函数形式的orthonormal basis可以通过Euler's formula换成复指数形式:
关于Fourier级数是否具有其他收敛性,如:逐点收敛、几乎处处收敛、绝对收敛、一致收敛,以后再说。