l2空间的完备性_用Hilbert空间描述Fourier级数

本文探讨了如何使用Hilbert空间描述Fourier级数,解释了Hilbert空间作为完备内积空间的特性,包括距离、角和正交性,并介绍了L2空间在表述Fourier级数中的作用。通过Hilbert空间的视角,文章阐述了trigonometric system在Fourier级数中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

c8e4f2414869de54e5d426760e3ca1d5.png

本文简单说说如何用Hilbert空间来描述Fourier级数。

Hilbert空间

完备的内积空间称作Hilbert空间,它是有限维Euclidean空间的推广,不局限于实数的情形和有限的维数,又不失完备性,意味着其上的Cauchy序列会收敛到此空间中的一点,因此微积分中的大部分概念可以推广到Hilbert空间中。

Hilbert空间具有距离、角、正交性等内积空间的特性,所谓的两个不同向量正交是指它们的内积为0,如在三维Euclidean空间中,互相垂直的向量之间是正交的。正交其实是垂直的抽象化说法。
Hilbert空间为基于任意正交系(orthogonal system)上的Fourier级数和Fourier变换提供了一种有效的表述方式,也就是说提供了一种语言来表述Fourier级数和Fourier变换,这首先要用到L2空间

L2空间

空间是指定义在测度空间
上的函数空间
,其中 X 代表函数的定义域,M 的元素是X上的一个sigma代数,而
是 sigma代数 M 上的测度,
空间可以简写做
空间表示 X 上所有平方可积(square-integrable)的可测函数的集合:

平方可积表示该函数绝对值平方的积分是有限的。对于几乎处处相同的函数,也就是说如果两函数只在一个测度为0的集合上不相等,可以把这两函数当做在
中相同的元素。
空间上的内积定义如下:
空间在此内积下是完备的,因此它是一个Hilbert空间,且是
空间中唯一的Hilbert空间。

Hilbert空间描述Fourier级数


用Hilbert空间的语言来说,设

空间的内积为:

如果向量集合

是空间
的一个orthonormal basis,那么
中任一函数的Fourier级数的表示如下:
关于对于
空间中的Fourier级数收敛性,有Riesz–Fischer定理:
如果 f 是
中的一个函数,则 f 的Fourier级数依范数收敛(convergence in norm)到 f:


把这个定理应用到classical Fourier级数,可以验证trigonometric system中的函数:


中的相互正交的函数,而:
的一个orthonormal basis
(其他的orthonormal basis可以用Gram-Schmidt算法来构造)。
且:

其中

当然三角函数形式的orthonormal basis可以通过Euler's formula换成复指数形式:

Riesz–Fischer定理的证明需要用到:Bessel不等式、Parseval定理等。

关于Fourier级数是否具有其他收敛性,如:逐点收敛、几乎处处收敛、绝对收敛、一致收敛,以后再说。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值