python 复数矩阵_numpy中的matrix矩阵处理

本文介绍了numpy矩阵对象numpy.matrix的使用,包括创建、属性、方法等。详细讲解了矩阵的转置、共轭、逆矩阵,以及各种计算操作如求和、累积、排序等,同时涵盖对复数矩阵的支持。
摘要由CSDN通过智能技术生成

numpy模块中的矩阵对象为numpy.matrix,包括矩阵数据的处理,矩阵的计算,以及基本的统计功能,转置,可逆性等等,包括对复数的处理,均在matrix对象中。 class numpy.matrix(data,dtype,copy):返回一个矩阵,其中data为ndarray对象或者字符形式;dtype:为data的type;copy:为bool类型。

>>> a = np.matrix('1 2 7; 3 4 8; 5 6 9')

>>> a             #矩阵的换行必须是用分号(;)隔开,内部数据必须为字符串形式(‘ ’),矩

matrix([[1, 2, 7],       #阵的元素之间必须以空格隔开。

[3, 4, 8],

[5, 6, 9]])

>>> b=np.array([[1,5],[3,2]])

>>> x=np.matrix(b)   #矩阵中的data可以为数组对象。

>>> x

matrix([[1, 5],

[3, 2]])

矩阵对象的属性:

matrix.T transpose:返回矩阵的转置矩阵

matrix.H hermitian (conjugate) transpose:返回复数矩阵的共轭元素矩阵

matrix.I inverse:返回矩阵的逆矩阵

matrix.A base array:返回矩阵基于的数组

矩阵对象的方法:

all([axis, out]) :沿给定的轴判断矩阵所有元素是否为真(非0即为真)

any([axis, out]) :沿给定轴的方向判断矩阵元素是否为真,只要一个元素为真则为真。

argmax([axis, out]) :沿给定轴的方向返回最大元素的索引(最大元素的位置).

argmin([axis, out]): 沿给定轴的方向返回最小元素的索引(最小元素的位置)

argsort([axis, kind, order]) :返回排序后的索引矩阵

astype(dtype[, order, casting, subok, copy]):将该矩阵数据复制,且数据类型为指定的数据类型

byteswap(inplace) Swap the bytes of the array elements

choose(choices[, out, mode]) :根据给定的索引得到一个新的数据矩阵(索引从choices给定)

clip(a_min, a_max[, out]) :返回新的矩阵,比给定元素大的元素为a_max,小的为a_min

compress(condition[, axis, out]) :返回满足条件的矩阵

conj() :返回复数的共轭复数

conjugate() :返回所有复数的共轭复数元素

copy([order]) :复制一个矩阵并赋给另外一个对象,b=a.copy()

cumprod([axis, dtype, out]) :返回沿指定轴的元素累积矩阵

cumsum([axis, dtype, out]) :返回沿指定轴的元素累积和矩阵

diagonal([offset, axis1, axis2]) :返回矩阵中对角线的数据

dot(b[, out]) :两个矩阵的点乘

dump(file) :将矩阵存储为指定文件,可以通过pickle.loads()或者numpy.loads()如:a.dump(‘d:\\a.txt’)

dumps() :将矩阵的数据转存为字符串.

fill(value) :将矩阵中的所有元素填充为指定的value

flatten([order]) :将矩阵转化为一个一维的形式,但是还是matrix对象

getA() :返回自己,但是作为ndarray返回

getA1():返回一个扁平(一维)的数组(ndarray)

getH() :返回自身的共轭复数转置矩阵

getI() :返回本身的逆矩阵

getT() :返回本身的转置矩阵

max([axis, out]) :返回指定轴的最大值

mean([axis, dtype, out]) :沿给定轴方向,返回其均值

min([axis, out]) :返回指定轴的最小值

nonzero() :返回非零元素的索引矩阵

prod([axis, dtype, out]) :返回指定轴方型上,矩阵元素的乘积.

ptp([axis, out]) :返回指定轴方向的最大值减去最小值.

put(indices, values[, mode]) :用给定的value替换矩阵本身给定索引(indices)位置的值

ravel([order]) :返回一个数组,该数组是一维数组或平数组

repeat(repeats[, axis]) :重复矩阵中的元素,可以沿指定轴方向重复矩阵元素,repeats为重复次数

reshape(shape[, order]) :改变矩阵的大小,如:reshape([2,3])

resize(new_shape[, refcheck]) :改变该数据的尺寸大小

round([decimals, out]) :返回指定精度后的矩阵,指定的位数采用四舍五入,若为1,则保留一位小数

searchsorted(v[, side, sorter]) :搜索V在矩阵中的索引位置

sort([axis, kind, order]) :对矩阵进行排序或者按轴的方向进行排序

squeeze([axis]) :移除长度为1的轴

std([axis, dtype, out, ddof]) :沿指定轴的方向,返回元素的标准差.

sum([axis, dtype, out]) :沿指定轴的方向,返回其元素的总和

swapaxes(axis1, axis2):交换两个轴方向上的数据.

take(indices[, axis, out, mode]) :提取指定索引位置的数据,并以一维数组或者矩阵返回(主要取决axis)

tofile(fid[, sep, format]) :将矩阵中的数据以二进制写入到文件

tolist() :将矩阵转化为列表形式

tostring([order]):将矩阵转化为python的字符串.

trace([offset, axis1, axis2, dtype, out]):返回对角线元素之和

transpose(*axes) :返回矩阵的转置矩阵,不改变原有矩阵

var([axis, dtype, out, ddof]) :沿指定轴方向,返回矩阵元素的方差

view([dtype, type]) :生成一个相同数据,但是类型为指定新类型的矩阵。

ü  All方法

>>> a = np.asmatrix('0 2 7; 3 4 8; 5 0 9')

>>> a.all()

False

>>> a.all(axis=0)

matrix([[False, False,  True]], dtype=bool)

>>> a.all(axis=1)

matrix([[False],

[ True],

[False]], dtype=bool)

ü  Astype方法

>>> a.astype(float)

matrix([[ 12.,   3.,   5.],

[ 32.,  23.,   9.],

[ 10., -14.,  78.]])

ü  Argsort方法

>>> a=np.matrix('12 3 5; 32 23 9; 10 -14 78')

>>> a.argsort()

matrix([[1, 2, 0],

[2, 1, 0],

[1, 0, 2]])

ü  Clip方法

>>> a

matrix([[ 12,   3,   5],

[ 32,  23,   9],

[ 10, -14,  78]])

>>> a.clip(12,32)

matrix([[12, 12, 12],

[32, 23, 12],

[12, 12, 32]])

ü  Cumprod方法

>>> a.cumprod(axis=1)

matrix([[    12,     36,    180],

[    32,    736,   6624],

[    10,   -140, -10920]])

ü  Cumsum方法

>>> a.cumsum(axis=1)

matrix([[12, 15, 20],

[32, 55, 64],

[10, -4, 74]])

ü  Tolist方法

>>> b.tolist()

[[12, 3, 5], [32, 23, 9], [10, -14, 78]]

ü  Tofile方法

>>> b.tofile('d:\\b.txt')

ü  compress()方法

>>> from numpy import *

>>> a = array([10, 20, 30, 40])

>>> condition = (a > 15) & (a < 35)

>>> condition

array([False, True, True, False], dtype=bool)

>>> a.compress(condition)

array([20, 30])

>>> a[condition]                                      # same effect

array([20, 30])

>>> compress(a >= 30, a)                              # this form a

so exists

array([30, 40])

>>> b = array([[10,20,30],[40,50,60]])

>>> b.compress(b.ravel() >= 22)

array([30, 40, 50, 60])

>>> x = array([3,1,2])

>>> y = array([50, 101])

>>> b.compress(x >= 2, axis=1)                       # illustrates

the use of the axis keyword

array([[10, 30],

[40, 60]])

>>> b.compress(y >= 100, axis=0)

array([[40, 50, 60]])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值