问题描述
幸运数是波兰数学家乌拉姆命名的。它采用与生成素数类似的“筛法”生成
。
首先从1开始写出自然数1,2,3,4,5,6,....
1 就是第一个幸运数。
我们从2这个数开始。把所有序号能被2整除的项删除,变为:
1 _ 3 _ 5 _ 7 _ 9 ....
把它们缩紧,重新记序,为:
1 3 5 7 9 .... 。这时,3为第2个幸运数,然后把所有能被3整除的序号位置的数删去。注意,是序号位置,不是那个数本身能否被3整除!! 删除的应该是5,11, 17, ...
此时7为第3个幸运数,然后再删去序号位置能被7整除的(19,39,...)
最后剩下的序列类似:
1, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69, 73, 75, 79, ...
输入格式
输入两个正整数m n, 用空格分开 (m < n < 1000*1000)
输出格式
程序输出 位于m和n之间的幸运数的个数(不包含m和n)。
样例输入1
1 20
样例输出1
5
样例输入2
30 69
样例输出2
8
解题思路:
用堆的做法相对美观,但思路不直接。所以我采用了暴力解题法,好吧,这是暴力杯。
定义一个char数组a[1000000],所有值赋‘1’,a[0]=‘0’,随后我们有题目可以发现 2 是里面唯一一个偶数的除数,作特殊处理,所有偶数不作考虑。也就又幸运数‘3’开始,如果存在值为‘1’计一,累积到幸运数便将那数对应的字符化为‘0’,直到幸运数大于输入的n。
#include"stdio.h"
int main()
{
int m,n,num,xin=3,key=0,m1,n1;
scanf("%d %d",&m,&n);
char i[1000000];
for(m1=0;m1<n;m1++)i[m1]='1';
num=1;
if(m<1)key++;
while(xin<n)
{
if(xin>m&&xin<n)key++;
n1=1;
for(m1=1;m1<n;m1+=2)
if(i[m1]=='1'&&n1%xin!=0)n1++;
else if(i[m1]=='1'&&n1%xin==0){n1=1;i[m1]='0';}
while(1)//获取下一个未置0的数作为新的幸运数
if(i[++xin]=='1'&&xin%2!=0)break;
}
printf("%d",key);
return 0;
}