wps2019数据分析加载项_数据分析的思维和方法

人生/工作的结果=思维方式*热情*能力

数据分析常用的工具技能:统计学、sql数据库、python、R、Excel、PPT

数据管理、分析、聚类

定义问题->数据收集(清洗)->数据建模->分析并输出结论(实现数据的管理、分析、聚类等)

数据分析岗位:项目经历(能力+思考+定位)、理论知识体系+实践(项目和能力范围)

数据岗位要求:四点:运营策略、客户需求、业务增长点、产品改进点

理解公司业务、建立运营分析体系

搭建完善的指标体系、提供数据支持

提供解决问题的策略和方案、撰写数据分析报告

数据分析常用的思维方式:

1、结构化/金字塔

画思维导图。重要的核心论点(金字塔顶:假设、问题、预测或者原因)->结果拆解(分论点,呈因果或者依赖关系)->MECE(相互独立,完全穷尽)->验证(论点可量化,可验证)

2、公式化

在结构化基础上,加上数量关系(加减乘除)将论点进行量化分析,验证论点,梳理出指标体系。上下互为计算关系,左右呈关联。

3、业务化

深入了解业务情况,结合具体业务进行分析,有效落地执行分析结果。结构化+公式化表示的是一种现象,业务化思维深究这种现象的原因,以数据结果推动业务。

业务的思维模式可以衍生出基础的分析方法:象限法、多维法、假设法、指数法、二八法、对比法和漏斗法。

象限法:用户价值和用户流失度的二维象限,RFM(M:消费金额,F:消费频率,R:最近一次消费),象限的划分(中位数,平均数,经验值)划分结果可用于一个策略落地。

多维法:品类、时间、地区等。用户统计维度(性别、年龄等)、用户行为维度(注册用户、用户偏好、用户兴趣、流失等)、消费维度(消费金额、频率、水平等)、商品维度(商品品类、品牌、属性等) ->组成立方体,进行多维分析。其中辛普森悖论:

https://baike.baidu.com/item/%E8%BE%9B%E6%99%AE%E6%A3%AE%E6%82%96%E8%AE%BA/4475862?fr=aladdin#1

将维度和类别进行细化,避免辛普森悖论。

假设法:启发性思考,用于没有直观数据或线索可分析的时候。

指数法:衡量统一标准->对数据进行加工(线性加权、反比例、log),得到指标(用户忠诚度、热度公式:log(UV+5*C,2)+(Tim-Init)/10 UV:独立访问,C:评论数)

二八法:只抓重点,20%的变量产生80%的效果,持续关注topN有价值的数据,但注意仍不能放弃全局,拓宽思维。

对比法:比例或比率的数据指标,有竞争对手、类别、特征属性、时间同比、转化、前后变化的对比。发现数据间的规律,结合多维对比、象限对比、假设对比等。

漏斗法:流程化思考,用于变化、过程、流程的分析。单一的漏斗分析没有用,和其他分析思维结合,比如多维和对比等。

如何锻炼数据分析思维:好奇心+生活中的练习。

2019-05-04 学习笔记

大数据特点:数据量、发生频率、数据种类

费雪:农业领域的实验设计法

A/B测试(随机对照测验):排除不需要的因素的评价方法。为同一个优化目标制定两个方案(比如两个页面),让一部分用户使用A方案,同时另一部分用户使用B 方案,统计并对比不同方案的转化率、点击量、留存率等指标,以判断不同方案的优劣并进行决策。

技能:统计学知识+数据处理能力+业务知识

CRM(客户关系分析工具):如selfoffice

5w1h分析方法(when:时间 where:地点 who:性别年龄等 what:商品 why:购入目的 how:数量/销售形态/金额)

贝叶斯概率:其中P(A/B)是在B发生的情况下,A发生的可能性。

数据分析描述:直方图+散点图(描述数值型数据)

正态分布:以平均值为中心,呈左右对称

分类数据:交叉表+交叉分类

平均值、中位数、众数

标准差:表现数据的离散度

百分位数:

偏差值:把握在整体中位置的有效指标。

t检验:p value越小,显著水平越高。难以解释,侧重于运用层面,母集与子集存在偏差。

数据可视化:柱形图、饼图、百分化柱形图、折线图、箱型图:最大最小值,箱体为25%~75%,中线表示中位数。

数据清洗:异常数据 重复项/缺失项

模型:回归分析+统计决策树

随机森林+适用于时间序列的ARIMA+寻找最优解的单纯性方法

R:完全免费的统计分析工具

假设型+数据型

excel保存数据为CSV文件,文本形式的数据,可被多种软件读取。

数据库与PHP语言结合,对录入错误数据可进行修正。

数据分析的PDCA(计划、实施、评价和改善)

PV:页面访问量 CVR:转换率 UV:独立访问量

《商务数据分析与应用》--读书笔记

一、商务数据分析原理

数据分析流程:明确分析目的和框架、数据收集(内部和外部渠道)、数据处理、数据分析、数据可视化、撰写报告(结论建议和解决方案)

数据分析原则:科学性、系统性、针对性、实用性和趋势性。

分析任务:

1、行业分析:行业数据采集、市场需求调研、产业链分析、细分市场分析、市场生命周期分析、行业竞争分析。

2、客户分析:客户数据收集、客户特征分析(客户画像)、客户行为分析、客户价值评估、目标客户精准营销、销售效果跟踪(回购率、转化率和投入产出比)

3、产品分析:竞争对手分析(SWOT)、用户特征分析、产品需求分析、产品生命周期分析、用户体验分析

4、运营分析:销售数据分析、推广数据分析、客服数据分析

业务拓展阶段:新客户数量、增长率、客单价等指标。

正常运营阶段:PV、GMV(成交额)、销售毛利等。

消减成本阶段:ROI(投资回报率)、UV(独立访客数)、转化回头率

常用分析模型:

PEST(政治、经济、社会、技术,分析外部宏观环境),SWOT(优势劣势机会和威胁,分析内部微观环境),5W2H(why、what、who、when、where+how、how much,应用检查产品的合理性,找出主要优缺点,设计新产品),逻辑树(基本原则:要素化,框架化,关联化,3种树:议题树、假设树、是否树)

练习:选择一家感兴趣的企业,运用多种渠道收集企业相关信息(PEST和SWOT结合分析)

常用分析方法:统计分析和机器学习

统计分析包括静态分析指标、动态分析方法、统计指数、抽样推断、相关与回归。

机器学习包括决策树、聚类算法、神经网络

静态分析指标:总量指标(单位总量和标志总量、时期和时点指标、实物价值劳动量)、相对指标(倍数和系数、成数、百分数和千分数、占比比率)、平均指标(算术平均数、调和平均数、众数和中位数)和变异指标(四分位差、平均差、标准差和方差)。

动态分析方法:时间数列序列(时间+指标数值),包括绝对数、相对数和平均数的动态数列。原则是时间长度一致,总体范围一致,指标定义内容和计算方法一致。

统计指数:个体指数和总指数,数量指标指数和质量指标指数,动态指数和静态指数,定基指数和环比指数,综合指数和平均指数。

抽样推断:借助样本信息的特征来估计和检验总体有关信息的特征,包括统计估计和假设检验。

相关与回归:回归是相关的深化,一元/多元回归,线性/非线性回归。步骤:1,回归模型(数学方程式)描述变量间的关系。2、估计模型的参数,得到样本回归方程。3,对模型进行统计检验,预测检验。

决策树:树状结构建立决策模型,常用来分类和回归,常用算法包括CART(classification and regression tree)、ID3、C4.5、随机森林(RForest)等,借助编程实现。

聚类算法:将各不相同的个体划分为拥有更多相似性的子群或者簇,常用算法包括K均值(K-means)、分层和FCM等。

神经网络:学习集用于构建神经网络,测试集验证。用于客户信用评估、新产品分析、客户特征分类、销售预测等。

二、商务数据分析工具

数据存储查询:数据库(SQL语言->关系型数据库管理系统)

数据分析:Excel、Python、Spss、R语言

数据可视化:可视化是什么?常用图表?常用工具?

SQL

1、数据查询:SELECT+FROM

2、数据排序:SELECT+ORDER BY

3、数据过滤:SELECT+WHERE,BETWEEN,IS NULL,LIKE

4、数据汇总:AVG()返回均值,COUNT()返回数量,MAX()返回最大值,MIN()返回最小值,SUM()和。

5、数据分组:SELECT+GROUP BY(过滤行用WHERE,用HAVING代替可以过滤分组)

6、联结(JOIN)表:等值联结、内联结、自联结、自然联结、外联结

7、其他操作:数据库的创建,表的创建、更新和删除,以及数据的插入更新和删除。

数据分析:收集-》处理-》分析-》可视化-》报告

EXCEL:1、加载SQL文件到新的工作表。2、常用EXCEL函数。

数据可视化:1、柱形图(2维)。2、折线图(2维)。3、饼图(表征比例,2维)。4、散点图(2维或3维)。5、气泡图(3维或4维)。6、雷达图(4维以上)

图表除了本身横纵两个维度外,可通过图形线型、颜色、大小和文字等不同的可视化特征来表达。

可视化工具:tableau,练习制作柱形图、折线图、树状图等。

三、商业数据分析应用

1、熟悉行业、产品、客户、运营分析的目的与内容,掌握常用的方法

行业分析:行业数据采集、市场需求调研、产业链分析、细分市场分析(确定目标市场)、市场生命周期分析、行业竞争分析

客户分析:客户数据采集、客户画像、客户行为分析、客户价值分析(常用RFM模型)、精准营销和效果评估

产品分析:竞争对手分析、用户特征分析、产品需求分析、产品生命周期分析、用户体验分析

运营分析:销售数据分析、推广数据分析、客服绩效分析

市场生命周期包括:启动期(传播是重点)、成长期(运营)、成熟期(品牌建设)、衰退期(产品转型和创新)

四、商业数据分析报告

分析报告特点:运用科学分析方法、运用数字/图形语言、注意定量分析、具有很强的针对性、注重准确性和时效性、具有很强的实用性

分类:说明型、快报型、计划型、总结型、调查型、分析型、研究型、预测型

报告结构:开篇(标题:观点型、概括型、分析型、疑问型,目录,前言:分析背景、目的和思路(产品、价值、渠道和促销)),正文(核心部分,分周期、地区、行业、领域、平台、销量),结尾(结论与建议,附录)

产业链:一个产业中,由相关联的上下游企业组成的结构。

客户画像:根据用户社会属性、生活习惯和消费行为等信息而抽象出的一个标签化的用户模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值