导语
内容提要
郭志强主编的《模式识别及MATLAB实现学习与实验指导》是与电子工业出版社出版的《模式识别及MATLAB实现》配套的学习指导书,在章节安排上与主教材一致,各章节内容包括本章知识结构、知识要点和实验指导,实验指导部分给出了实验步骤、MATLAB代码和实验结果。
实验的内容和训练对模式识别学习者有很大帮助,也为从事模式识别的工程技术人员提供了一定的指导。
目录
第1章 贝叶斯决策
1.1 知识要点
1.2 实验指导
1.2.1 基于最小错误率的贝叶斯决策
1.2.2 最小风险判决规则
1.2.3 最大似然比判决规则
1.2.4 Neyman-Pearsen 判决
第2章 参数估计
2.1 知识要点
2.2 实验指导
2.2.1 最大似然估计
2.2.2 贝叶斯估计
2.2.3 Parzen 窗
2.2.4 N k 近邻估计法
第3章 非参数判别分类法
3.1 知识要点
3.2 实验指导
3.2.1 两分法
3.2.2 两分法的设计
3.2.3 没有不确定区域的两分法
3.2.4 广义线性判别函数的设计与实现
3.2.5 感知器算法的设计/实现
3.2.6 两类问题Fisher 准则
3.2.7 基于距离的分段线性判别函数
3.2.8 支持向量机
第4章 聚类分析法
4.1 知识要点
4.2 实验指导
4.2.1 距离测度
4.2.2 相似测度算法
4.2.3 基于匹配测度算法的实现
4.2.4 基于类间距离测度方法
4.2.5 聚类函数准则
4.2.6 基于最近邻规则的聚类算法
4.2.7 基于最大最小距离聚类算法的实现
4.2.8 基于K-均值聚类算法实验
第5章 特征提取与选择
5.1 知识要点
5.2 实验指导
5.2.1 基于距离的可分性判据
5.2.2 图像的傅里叶变换二(旋转性质)
5.2.3 基于熵函数的可分性判据
5.2.4 利用类均值向量提取特征
5.2.5 基于类平均向量中判别信息的最优压缩的实现
5.2.6 增添特征法
5.2.7 剔减特征法
5.2.8 增l 减r(算法)的设计/实现
5.2.9 分支定界法(BAB 算法)
第6章 模糊模式识别
6.1 知识要点
6.2 实验指导
6.2.1 最大隶属度识别法
6.2.2 择近原则识别法
6.2.3 基于模糊等价关系的聚类算法研究
第7章 数字图像处理的基础
7.1 知识要点
7.2 实验指导
7.2.1 前馈神经网络感知器的设计实现
7.2.2 基于BP 网络的多层感知器
7.2.3 自组织特征映射网络的设计/实现
7.2.4 径向基神经网络
参考文献