matlab模式识别实验二,模式识别及MATLAB实现学习与实验指导:编者:郭志强 : 数理化学科 :数理化学科 :数学 ...

导语

b90ee82885d6ae6c68e81579c37a5cbd.png

内容提要

b90ee82885d6ae6c68e81579c37a5cbd.png

郭志强主编的《模式识别及MATLAB实现学习与实验指导》是与电子工业出版社出版的《模式识别及MATLAB实现》配套的学习指导书,在章节安排上与主教材一致,各章节内容包括本章知识结构、知识要点和实验指导,实验指导部分给出了实验步骤、MATLAB代码和实验结果。

实验的内容和训练对模式识别学习者有很大帮助,也为从事模式识别的工程技术人员提供了一定的指导。

目录

第1章 贝叶斯决策

1.1 知识要点

1.2 实验指导

1.2.1 基于最小错误率的贝叶斯决策

1.2.2 最小风险判决规则

1.2.3 最大似然比判决规则

1.2.4 Neyman-Pearsen 判决

第2章 参数估计

2.1 知识要点

2.2 实验指导

2.2.1 最大似然估计

2.2.2 贝叶斯估计

2.2.3 Parzen 窗

2.2.4 N k 近邻估计法

第3章 非参数判别分类法

3.1 知识要点

3.2 实验指导

3.2.1 两分法

3.2.2 两分法的设计

3.2.3 没有不确定区域的两分法

3.2.4 广义线性判别函数的设计与实现

3.2.5 感知器算法的设计/实现

3.2.6 两类问题Fisher 准则

3.2.7 基于距离的分段线性判别函数

3.2.8 支持向量机

第4章 聚类分析法

4.1 知识要点

4.2 实验指导

4.2.1 距离测度

4.2.2 相似测度算法

4.2.3 基于匹配测度算法的实现

4.2.4 基于类间距离测度方法

4.2.5 聚类函数准则

4.2.6 基于最近邻规则的聚类算法

4.2.7 基于最大最小距离聚类算法的实现

4.2.8 基于K-均值聚类算法实验

第5章 特征提取与选择

5.1 知识要点

5.2 实验指导

5.2.1 基于距离的可分性判据

5.2.2 图像的傅里叶变换二(旋转性质)

5.2.3 基于熵函数的可分性判据

5.2.4 利用类均值向量提取特征

5.2.5 基于类平均向量中判别信息的最优压缩的实现

5.2.6 增添特征法

5.2.7 剔减特征法

5.2.8 增l 减r(算法)的设计/实现

5.2.9 分支定界法(BAB 算法)

第6章 模糊模式识别

6.1 知识要点

6.2 实验指导

6.2.1 最大隶属度识别法

6.2.2 择近原则识别法

6.2.3 基于模糊等价关系的聚类算法研究

第7章 数字图像处理的基础

7.1 知识要点

7.2 实验指导

7.2.1 前馈神经网络感知器的设计实现

7.2.2 基于BP 网络的多层感知器

7.2.3 自组织特征映射网络的设计/实现

7.2.4 径向基神经网络

参考文献

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值