概率密度变换公式 雅可比矩阵_雅可比行列式该如何理解?

本文探讨了一元导数的推广到多元函数的定义,通过线性映射A的引入解释了雅可比矩阵的概念,并以二元函数为例详细证明了它与导数的关系。雅可比行列式的几何意义及在极坐标变换中的应用也被提及,强调了在多元微积分中考虑雅可比行列式的重要性。
摘要由CSDN通过智能技术生成

cccd81067ca4415e38d1aebad6923c49.png

一元微积分导数的定义为(f(x+h)-f(x))/h,当h趋向0时,如果极限存在,称函数可导。

当函数变量不再是一元的时候,如何将导数的概念推广到多元函数呢?刚刚的那个定义式是无法适用在多元函数的。

所以需要将上式稍稍修改一下,如果存在一个线性映射A,使得f(x+h)-f(x)=Ah+O(h),那么称函数f(x)可导,且A=f'(x)。有了这个定义式,导数概念就可以从一元向多元函数推广了。下面我们需要证明这个线性映射A就是雅可比矩阵。

为了简单起见,只需在二元函数下证明就可以了,取函数f=f(x,y)为可微函数,增量h=(s,t),则:

f(x+h)-f(x)=f(x+s,y+t)-f(x,y)=(f(x+s,y+t)-f(x,y+t))+(f(x,y+t)-f(x,y)),

对上式应用拉格朗日公式,易知有:

f(x+h)-f(x)=(∂f/∂x)s+(∂f/∂y)t+O(h)=Ah+O(h)

这里A就是矩阵(∂f/∂x,∂f/∂y),就是大名鼎鼎的雅可比矩阵了。一般记作df=A。

从几何角度说,这个以A(的列向量)为基底张成的空间称为函数在此处的切空间,在一元函数的时候为函数f在此处的切线,二元的时候为此处的切面,用微分代替函数值称为线性化,这是贯穿整个微积分世界的思想。

雅可比矩阵为方阵的时候,detA称为雅可比行列式,几何意义为对向量的缩放程度,detA=1表示对向量没有缩放,detA=0表示将向量降维了。所以多元微积分变量代还需要关注雅可比行列式。

以极坐标变换为例,x=rcosθ,y=rsinθ,其雅可比行列式detA=r,可知这个变量代换将原函数放大了r倍,所以在求定积分时候需要将其除回去。这里不允许雅可比行列式为0,否则求出来的积分就是0了,即变量代换不合法,不是正则变换。

正如雅可比矩阵是一元微分向多维的推广,雅可比行列式也可以看成一元微积分换元公式du=u'dx向多元微积分换元法的推广。

753d202ef11222fe512c75b85d0552b1.gif

作者:没文化   ;来源:知乎链接:https://www.zhihu.com/question/318504273/answer/639295875

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值