概率基础——泊松分布

概率基础——泊松分布

介绍

在统计学中,泊松分布是一种用来描述单位时间(或空间)内事件发生次数的概率分布。它常被用来模拟稀有事件在固定时间或空间内的发生情况。泊松分布有着许多实际应用,尤其是在描述随机事件的计数过程中。

理论及公式

泊松分布的概率质量函数(PMF)为:

P ( X = k ) = e − λ λ k k ! P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!} P(X=k)=k!eλλk

其中, k k k 表示事件发生的次数, λ \lambda λ 是单位时间(或空间)内事件发生的平均次数。

理论背景

泊松分布的出现是基于二项分布的一种极限情况。具体来说,当二项分布的试验次数 ( n ) 很大,每次试验成功的概率 p p p 很小,但是试验次数 n n n 乘以成功概率 p p p的期望值 n p np np保持适中时,二项分布可以近似为泊松分布。这种情况下,泊松分布的参数 λ \lambda λ 即为 n p np np

示例与应用

一个典型的例子是飞机事故的发生情况。假设我们将一天内所有飞机起飞和降落的次数视为一系列独立同分布的伯努利试验,每次试验成功的概率 p p p即是一架飞机出现事故的概率,而试验次数 n n n 则是一天内飞机起飞和降落的总次数。在这种情况下,如果 n n n很大而 p p p很小,使得 n p np np保持适中,那么飞机事故的总数就可以用泊松分布来近似描述。

import matplotlib.pyplot as plt
from scipy.stats import poisson

# 参数设置
lambd = 5  # 平均发生次数

# x范围为0到20,即事件发生的次数范围
x = range(0, 21)
params = [10, 5]

fig, ax = plt.subplots(2, 1, figsize=(10, 6))
for i in range(len(params)):
    poisson_rv = poisson(mu=params[i])
    mean, var, skew, kurt = poisson_rv.stats(moments='mvsk')
    ax[i].plot(x, poisson_rv.pmf(x), 'ro', lw=5, alpha=0.6, ms=8)
    ax[i].vlines(x, 0, poisson_rv.pmf(x), colors='r', lw=5)
    ax[i].set_title(r'$\lambda$ = %d' % params[i])
    ax[i].set_xticks(x)
    ax[i].grid(ls='--')
    # 打印信息
    print('$\lambda$={}, E[X]={},V[X]={}'.format(params[i], mean, var))

plt.show()

在这里插入图片描述
在这里插入图片描述

λ = 5 \lambda=5 λ=5的泊松分布进行采样,代码如下:

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import poisson

# 参数设置
lambda_ = 5  # 平均发生次数

data = poisson.rvs(lambda_, size=100000)

plt.figure()
plt.hist(data, density=True, alpha=0.7, edgecolor='b')
plt.gca().set_xticks(range(0, 15))

# 打印信息
print('E[X]={:.2f}, V[X]={:.2f}'.format(np.mean(data), np.var(data)))
plt.grid(ls='--')
plt.show()

在这里插入图片描述
输出结果为:
在这里插入图片描述
通过10万次采样试验得出统计结论,根据结果计算均值和方差,与模型的理论推导值一致。

结论

通过绘制泊松分布的概率质量函数图,可以清晰地看到其钟形曲线特征。随着事件发生次数增加,概率质量逐渐下降,但总体上形成一个对称的分布。这种形式适用于描述稀有事件的发生情况,其中平均发生次数 λ \lambda λ起到关键作用。泊松分布的应用广泛,特别是在各种计数过程中,如电话呼入量、网站访问量、交通事故发生数等。对于以上例子中的飞机事故,泊松分布的使用能够为我们提供有效的建模方法,从而更好地理解和预测事件的发生情况。

### 泊松分布参数估计方法 对于图像传感器中的泊松噪声建模,通常涉及光子计数过程。这种类型的噪声源于物理现象,即当光子撞击感光元件时产生的随机波动。为了准确地模拟这一过程并估计相应的参数,可以采取统计学的方法。 一种常用的技术是从已知条件下的测量数据出发来推断λ(lambda),这是泊松分布的关键参数,代表单位时间内发生的平均事件次数或在此上下文中每像素位置上的预期电子数量[^2]。具体来说: - **最大似然估计 (MLE)** 是最常用的参数估计技术之一。通过收集一组样本点{x_i},这些样本被认为是来自相同但未知的泊松分布,则可以通过最大化似然函数L(λ|x_1,...,x_n)=Πp(x_i;λ),其中p表示概率质量函数,求解最优λ值。 对于泊松分布而言,其均值μ等于方差σ²都等于λ。因此,在实际应用中往往可以直接计算观测到的数据集{I(i,j)}的算术平均作为λ的一个无偏估计\[ \hat{\lambda}_{\text {ML }}=\frac{1}{N}\sum_{i=0}^{M-1}\sum_{j=0}^{N-1} I(i, j)\]。 ```python import numpy as np def estimate_poisson_param(image_data): """ Estimate the parameter lambda of a Poisson distribution from image data. Parameters: image_data : ndarray Input array containing pixel intensities. Returns: float Estimated value of lambda. """ # Flatten the input to work with all pixels together flat_image = image_data.flatten() # Calculate mean intensity which serves as an estimator for lambda estimated_lambda = np.mean(flat_image) return estimated_lambda ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值