【概率论】离散型随机变量分布——伯努利分布、泊松分布

先简单复习下之前的内容,离散型随机变量指的是随机变量X的取值是有限的(或无穷可列的)。详细的解释可以参照这篇博文:https://blog.csdn.net/dengfangmei1216/article/details/107526615

随机变量的学习结构如下,大家可以参考,现在我们来看离散型随机变量的几大重要分布都有哪些。
在这里插入图片描述

1. 0-1分布(伯努利分布)

0-1分布很简单,就是字面意思,即随机变量X的取值只有两个,0和1,表示每次试验的结果只有2种,非A即B。

比如像我们常说的抛一次硬币的结果,看用户是否使用某优惠券等,都是服从0-1分布的;其实,在我们的生活中任何一个只有两种结果的随机现象都服从0-1分布,记做X~B(1,p),它表示只进行一次试验,事件A发生的概率为p,不发生的概率为1-p。
在这里插入图片描述

2. 二项分布

二项分布实际就是将上述的伯努利试验独立重复的进行n次,发生事件A的次数是服从二项分布的,记做X~B(n,p),其概率分

离散型随机变量是在概率论中占有重要地位的一类随机变量,其可能取得的值是有限或者无限可数的集合。以下是关于离散型随机变量的一些基本概念及其性质。 ### 定义 离散型随机变量是指可以取一系列分离数值的随机变量。这些数值通常是整数但不局限于此;只要它们之间存在明确的空间间隔即可。例如掷骰子的结果就是一个典型的离散型随机变量例子,因为结果只能是一系列特定的整数值之一(1, 2, 3, 4, 5 或者 6)。 ### 数学定义 设$(\Omega,\mathcal{F},P)$是一个概率空间,则$\Omega$上的实函数$X:\Omega \to \mathbb{R}$称为离散型随机变量,若它的像集${x_1,x_2,...} = X(\Omega)\subset \mathbb{R}$至多为可数无穷或有限,并且对于任意$x_i \in X(\Omega)$都有对应的事件$\{\omega:X(\omega)=x_i\}\in\mathcal{F}$使得$P(X=x_i)>0$成立。 ### 主要性质 - **分布律**:描述了离散型随机变量所有可能取值的概率大小。记作$p(x_i) = P(X = x_i), i=1,2...$, 其满足两个条件: - 对所有的$i$,有$0 \leq p(x_i) \leq 1$ - $\sum_{i}p(x_i) = 1$ - **期望值 (数学期望)**:表示的是长期平均而言,我们预期从这个随机试验得到什么结果。计算公式如下: $$E[X] = \sum_{i}x_ip(x_i)$$ - **方差**:衡量数据分散程度的一个度量,用于量化随机变量与其均值之间的偏差平方的加权平均。方差的计算方式如下: $$Var(X) = E[(X-E[X])^2]=\sum_{i}(x_i-E[X])^2p(x_i)$$ - **标准差**:方差的正平方根,提供了以相同单位测量的数据点相对于均值的波动情况。 $$\sigma_X=\sqrt{Var(X)}$$ ### 示例 考虑一个简单的公平硬币投掷实验,其中正面朝上被赋值为1,反面朝下则为0。这是一个伯努利试验的例子,而这样的单次试验所形成的随机变量即为离散型随机变量。假设每次抛出正面和反面的概率都是相等的,那么我们可以写出此随机变量分布律为: | 结果 | 概率 | | --- | ---- | | 0 | 1/2 | | 1 | 1/2 | 在这个情况下,期望值就是$E[X]=(0\times1/2)+(1\times1/2)=0.5$。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值