中文 哈工大_哈工大讯飞联合实验室发布中文RoBERTawwmext预训练模型

哈工大讯飞联合实验室结合中文Whole Word Masking技术和RoBERTa模型,发布预训练模型RoBERTa-wwm-ext,提升中文信息处理任务性能。该模型在多项自然语言处理任务中取得显著效果,如阅读理解、司法阅读理解和自然语言推断。模型训练数据总计5.4亿词,直接使用max_len=512进行预训练,并取消了Next Sentence Prediction。
摘要由CSDN通过智能技术生成

d549c63929254d104148daee2450ee92.png

哈工大讯飞联合实验室(HFL)相继发布了基于Whole Word Masking(WWM)的中文预训练BERT模型(BERT-wwm,BERT-wwm-ext)以及中文预训练XLNet模型(XLNet-mid,XLNet-base),受到了业界广泛关注以及下载使用。近期,Facebook提出的RoBERTa模型进一步刷新了多个英文数据集的最好成绩,成为目前最流行的预训练模型之一。哈工大讯飞联合实验室结合中文Whole Word Masking技术以及RoBERTa模型发布中文RoBERTa-wwm-ext预训练模型。该模型在使用上与中文BERT系列模型完全一致,无需任何代码调整即可使用。通过实验验证该模型在多个自然语言处理任务中取得了显著性能提升。我们欢迎各位专家学者下载使用,进一步促进中文信息处理的研究发展。

项目地址:https://github.com/ymcui/Chinese-BERT-wwm

中文RoBERTa-wwm-ext

本次发布的中文RoBERTa-wwm-ext结合了中文Whole Word Masking技术以及RoBERTa模型的优势,得以获得更好的实验效果。该模型包含如下特点:

  • 预训练阶段采用wwm策略进行mask(但没有使用dynamic masking)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值