keras 分布式_为什么选择 Keras?

为什么选择 Keras?

在如今无数深度学习框架中,为什么要使用 Keras 而非其他?以下是 Keras 与现有替代品的一些比较。

Keras 优先考虑开发人员的经验

Keras 是为人类而非机器设计的 API。Keras 遵循减少认知困难的最佳实践: 它提供一致且简单的 API,它将常见用例所需的用户操作数量降至最低,并且在用户错误时提供清晰和可操作的反馈。

这使 Keras 易于学习和使用。作为 Keras 用户,你的工作效率更高,能够比竞争对手更快地尝试更多创意,从而帮助你赢得机器学习竞赛。

这种易用性并不以降低灵活性为代价:因为 Keras 与底层深度学习语言(特别是 TensorFlow)集成在一起,所以它可以让你实现任何你可以用基础语言编写的东西。特别是,tf.keras 作为 Keras API 可以与 TensorFlow 工作流无缝集成。

Keras 被工业界和学术界广泛采用

Deep learning 框架排名,由 Jeff Hale 基于 7 个分类的 11 个数据源计算得出

截至 2018 年中期,Keras 拥有超过 250,000 名个人用户。与其他任何深度学习框架相比,Keras 在行业和研究领域的应用率更高(除 TensorFlow 之外,且 Keras API 是 TensorFlow 的官方前端,通过 tf.keras 模块使用)。

您已经不断与使用 Keras 构建的功能进行交互 - 它在 Netflix, Uber, Yelp, Instacart, Zocdoc, Square 等众多网站上使用。它尤其受以深度学习作为产品核心的创业公司的欢迎。

Keras也是深度学习研究人员的最爱,在上载到预印本服务器 arXiv.org 的科学论文中被提及的次数位居第二。Keras 还被大型科学组织的研究人员采用,特别是 CERN 和 NASA。

Keras 可以轻松将模型转化为产品

与任何其他深度学习框架相比,你的 Keras 模型可以在更广泛的平台上轻松部署:

在 iOS 上,通过 Apple’s CoreML(苹果为 Keras 提供官方支持)。这里有一个教程。

在 Android 上,通过 TensorFlow Android runtime,例如:Not Hotdog app。

在浏览器中,通过 GPU 加速的 JavaScript 运行时,例如:Keras.js 和 WebDNN。

在 Google Cloud 上,通过 TensorFlow-Serving。

在 Raspberry Pi 树莓派上。

Keras 支持多个后端引擎,不会将你锁定到一个生态系统中

你的 Keras 模型可以基于不同的深度学习后端开发。重要的是,任何仅利用内置层构建的 Keras 模型,都可以在所有这些后端中移植:你可以用一种后端训练模型,再将它载入另一种后端中(例如为了发布的需要)。支持的后端有:

谷歌的 TensorFlow 后端

微软的 CNTK 后端

Theano 后端

亚马逊也正在为 Keras 开发 MXNet 后端。

如此一来,你的 Keras 模型可以在 CPU 之外的不同硬件平台上训练:

Google TPU,通过 TensorFlow 后端和 Google Cloud

OpenCL 支持的 GPU, 比如 AMD, 通过 PlaidML Keras 后端

Keras 拥有强大的多 GPU 和分布式训练支持

Keras 的发展得到深度学习生态系统中的关键公司的支持

Keras 的开发主要由谷歌支持,Keras API 以 tf.keras 的形式包装在 TensorFlow 中。此外,微软维护着 Keras 的 CNTK 后端。亚马逊 AWS 正在开发 MXNet 支持。其他提供支持的公司包括 NVIDIA、优步、苹果(通过 CoreML)等。

Keras中设置分布式训练可以使用TensorFlow的tf.distribute.Strategy API。这个API提供了多种分布式策略,可以根据不同的使用场景选择适合的策略。其中,对于单机多卡训练,可以使用MirroredStrategy。\[1\] 使用MirroredStrategy时,需要在代码中引入tf.distribute.MirroredStrategy,并在创建模型之前实例化该策略。然后,将模型的创建和编译放在strategy.scope()的上下文中,以确保模型在所有可用的GPU上进行复制和训练。\[2\] 下面是一个设置分布式训练的示例代码: ```python import tensorflow as tf from tensorflow import keras # 实例化MirroredStrategy strategy = tf.distribute.MirroredStrategy() # 在strategy.scope()的上下文中创建和编译模型 with strategy.scope(): model = keras.Sequential(\[...\]) # 创建模型 model.compile(\[...\]) # 编译模型 # 加载数据集 train_dataset = mnist_train.map(scale).cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE) eval_dataset = mnist_test.map(scale).batch(BATCH_SIZE) # 在分布式环境下训练模型 model.fit(train_dataset, epochs=10, validation_data=eval_dataset) ``` 在上述代码中,MirroredStrategy会自动将模型复制到所有可用的GPU上,并在每个GPU上进行训练。这样可以充分利用多个GPU的计算资源,加快模型训练的速度。\[1\] 需要注意的是,分布式训练需要有多个GPU才能发挥作用。如果只有单个GPU,使用分布式训练可能不会带来性能上的提升。另外,分布式训练还需要适当调整batch size和学习率等超参数,以获得最佳的训练效果。 #### 引用[.reference_title] - *1* [【Keras】TensorFlow分布式训练](https://blog.csdn.net/qq_36643449/article/details/124592521)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [Keras分布式训练](https://blog.csdn.net/weixin_39693193/article/details/111539493)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [Tensorflow2.0进阶学习-Keras分布式训练 (九)](https://blog.csdn.net/u010095372/article/details/124547254)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值