python中文相似度_python文本相似度计算

原标题:python文本相似度计算

e6d1a3d906344ac1a2fb915756d4b07f_th.jpg

步骤

分词、去停用词

词袋模型向量化文本

TF-IDF模型向量化文本

LSI模型向量化文本

计算相似度

理论知识

两篇中文文本,如何计算相似度?相似度是数学上的概念,自然语言肯定无法完成,所有要把文本转化为向量。两个向量计算相似度就很简单了,欧式距离、余弦相似度等等各种方法,只需要中学水平的数学知识。

那么如何将文本表示成向量呢?

词袋模型

最简单的表示方法是词袋模型。把一篇文本想象成一个个词构成的,所有词放入一个袋子里,没有先后顺序、没有语义。

例如:

John likes to watch movies. Mary likes too.

John also likes to watch football games.

这两个句子,可以构建出一个词典,key为上文出现过的词,value为这个词的索引序号

{"John": 1, "likes": 2,"to": 3, "watch": 4, "movies": 5,"also": 6, "football": 7, "games": 8,"Mary": 9, "too": 10}

那么,上面两个句子用词袋模型表示成向量就是:

[1, 2, 1, 1, 1, 0, 0, 0, 1, 1]

[1, 1,1, 1, 0, 1, 1, 1, 0, 0]

相对于英文,中文更复杂一些,涉及到分词。准确地分词是所有中文文本分析的基础,本文使用结巴分词,完全开源而且分词准确率相对有保障。

TF-IDF模型

词袋模型简单易懂,但是存在问题。中文文本里最常见的词是“的”、“是”、“有”这样的没有实际含义的词。一篇关于足球的中文文本,“的”出现的数量肯定多于“足球”。所以,要对文本中出现的词赋予权重。

一个词的权重由TF * IDF 表示,其中TF表示词频,即一个词在这篇文本中出现的频率;IDF表示逆文档频率,即一个词在所有文本中出现的频率倒数。因此,一个词在某文本中出现的越多,在其他文本中出现的越少,则这个词能很好地反映这篇文本的内容,权重就越大。

回过头看词袋模型,只考虑了文本的词频,而TF-IDF模型则包含了词的权重,更加准确。文本向量与词袋模型中的维数相同,只是每个词的对应分量值换成了该词的TF-IDF值。

TF

7f22da7ea193495b8036c50c3e90cb2c.jpg

IDF

LSI模型

TF-IDF模型足够胜任普通的文本分析任务,用TF-IDF模型计算文本相似度已经比较靠谱了,但是细究的话还存在不足之处。实际的中文文本,用TF-IDF表示的向量维数可能是几百、几千,不易分析计算。此外,一些文本的主题或者说中心思想,并不能很好地通过文本中的词来表示,能真正概括这篇文本内容的词可能没有直接出现在文本中。

因此,这里引入了Latent Semantic Indexing(LSI)从文本潜在的主题来进行分析。LSI是概率主题模型的一种,另一种常见的是LDA,核心思想是:每篇文本中有多个概率分布不同的主题;每个主题中都包含所有已知词,但是这些词在不同主题中的概率分布不同。LSI通过奇异值分解的方法计算出文本中各个主题的概率分布,严格的数学证明需要看相关论文。假设有5个主题,那么通过LSI模型,文本向量就可以降到5维,每个分量表示对应主题的权重。

python实现

分词上使用了结巴分词https://github.com/fxsjy/jieba,词袋模型、TF-IDF模型、LSI模型的实现使用了gensim库 https://github.com/RaRe-Technologies/gensim

import jieba.posseg as pseg

import codecs

from gensim import corpora, models, similarities

构建停用词表

stop_words = '/Users/yiiyuanliu/Desktop/nlp/demo/stop_words.txt'

stopwords = codecs.open(stop_words,'r',encoding='utf8').readlines()

stopwords = [ w.strip() for w in stopwords ]

结巴分词后的停用词性 [标点符号、连词、助词、副词、介词、时语素、‘的’、数词、方位词、代词]

stop_flag = ['x', 'c', 'u','d', 'p', 't', 'uj', 'm', 'f', 'r']

对一篇文章分词、去停用词

def tokenization(filename):

result = []

with open(filename, 'r') as f:

text = f.read()

words = pseg.cut(text)

for word, flag in words:

if flag not in stop_flag and word not in stopwords:

result.append(word)

return result

选取三篇文章,前两篇是高血压主题的,第三篇是iOS主题的。

filenames = ['/Users/yiiyuanliu/Desktop/nlp/demo/articles/13 件小事帮您稳血压.txt',

'/Users/yiiyuanliu/Desktop/nlp/demo/articles/高血压患者宜喝低脂奶.txt',

'/Users/yiiyuanliu/Desktop/nlp/demo/articles/ios.txt'

]

corpus = []

for each in filenames:

corpus.append(tokenization(each))

print len(corpus)

Building prefix dict from the default dictionary ...

Loading model from cache /var/folders/1q/5404x10d3k76q2wqys68pzkh0000gn/T/jieba.cache

Loading model cost 0.349 seconds.

Prefix dict has been built succesfully.

建立词袋模型

dictionary = corpora.Dictionary(corpus)

print dictionary

Dictionary(431 unique tokens: [u'u627eu51fa', u'u804cu4f4d', u'u6253u9f3e', u'u4ebau7fa4', u'u996eu54c1']...)

doc_vectors = [dictionary.doc2bow(text) for text in corpus]

print len(doc_vectors)

print doc_vectors

3

[[(0, 1), (1, 3), (2, 2), (3, 1), (4, 3), (5, 3), (6, 3), (7, 1), (8, 1), (9, 1), (10, 1), (11, 3), (12, 1), (13, 2), (14, 3), (15, 3), (16, 1), (17, 2), (18, 1), (19, 1), (20, 1), (21, 2), (22, 1), (23, 1), (24, 1), (25, 1), (26, 1), (27, 3), (28, 1), (29, 1), (30, 1), (31, 1), (32, 1), (33, 1), (34, 1), (35, 1), (36, 1), (37, 1), (38, 1), (39, 1), (40, 2), (41, 1), (42, 2), (43, 1), (44, 2), (45, 1), (46, 4), (47, 1), (48, 2), (49, 1), (50, 2), (51, 1), (52, 1), (53, 1), (54, 1), (55, 1), (56, 1), (57, 1), (58, 1), (59, 1), (60, 1), (61, 1), (62, 1), (63, 1), (64, 1), (65, 3), (66, 1), (67, 1), (68, 1), (69, 2), (70, 2), (71, 5), (72, 1), (73, 2), (74, 3), (75, 1), (76, 1), (77, 1), (78, 2), (79, 1), (80, 1), (81, 1), (82, 1), (83, 2), (84, 3), (85, 1), (86, 2), (87, 1), (88, 3), (89, 1), (90, 1), (91, 1), (92, 2), (93, 1), (94, 1), (95, 2), (96, 2), (97, 1), (98, 3), (99, 1), (100, 1), (101, 1), (102, 2), (103, 1), (104, 1), (105, 1), (106, 1), (107, 1), (108, 2), (109, 1), ]]

建立TF-IDF模型

tfidf = models.TfidfModel(doc_vectors)

tfidf_vectors = tfidf[doc_vectors]

print len(tfidf_vectors)

print len(tfidf_vectors[0])

3

258

构建一个query文本,是高血压主题的,利用词袋模型的字典将其映射到向量空间

query = tokenization('/Users/yiiyuanliu/Desktop/nlp/demo/articles/关于降压药的五个问题.txt')

query_bow = dictionary.doc2bow(query)

print len(query_bow)

print query_bow

35

[(6, 1), (11, 1), (14, 1), (19, 1), (25, 1), (28, 1), (38, 2), (44, 3), (50, 4), (67, 1), (71, 1), (97, 1), (101, 3), (105, 2), (137, 1), (138, 4), (148, 6), (151, 2), (155, 1), (158, 3), (162, 4), (169, 1), (173, 2), (203, 1), (232, 12), (236, 1), (244, 9), (257, 1), (266, 1), (275, 2), (282, 1), (290, 2), (344, 1), (402, 1), (404, 3)]

index = similarities.MatrixSimilarity(tfidf_vectors)

用TF-IDF模型计算相似度,相对于前两篇高血压主题的文本,iOS主题文本与query的相似度很低。可见TF-IDF模型是有效的,然而在语料较少的情况下,与同是高血压主题的文本相似度也不高。

sims = index[query_bow]

print list(enumerate(sims))

[(0, 0.28532028), (1, 0.28572506), (2, 0.023022989)]

构建LSI模型,设置主题数为2(理论上这两个主题应该分别为高血压和iOS)

lsi = models.LsiModel(tfidf_vectors, id2word=dictionary, num_topics=2)

lsi.print_topics(2)

[(0,

u'0.286*"u9ad8u8840u538b" + 0.241*"u8840u538b" + 0.204*"u60a3u8005" + 0.198*"u559d" + 0.198*"u4f4e" + 0.198*"u8865u9499" + 0.155*"u538bu529b" + 0.155*"u852cu83dc" + 0.132*"u542bu9499" + 0.132*"u8840u9499"'),

(1,

u'0.451*"iOS" + 0.451*"u5f00u53d1" + 0.322*"u610fu4e49" + 0.193*"u57f9u8bad" + 0.193*"u9762u8bd5" + 0.193*"u884cu4e1a" + 0.161*"u7b97u6cd5" + 0.129*"u9ad8u8003" + 0.129*"u5e02u573a" + 0.129*"u57fau7840"')]

lsi_vector = lsi[tfidf_vectors]

for vec in lsi_vector:

print vec

[(0, 0.74917098831536277), (1, -0.0070559356931168236)]

[(0, 0.74809557226254608), (1, -0.054041302062161914)]

[(0, 0.045784366765220297), (1, 0.99846660199817183)]

在LSI向量空间中,所有文本的向量都是二维的

query = tokenization('/Users/yiiyuanliu/Desktop/nlp/demo/articles/关于降压药的五个问题.txt')

query_bow = dictionary.doc2bow(query)

print query_bow

[(6, 1), (11, 1), (14, 1), (19, 1), (25, 1), (28, 1), (38, 2), (44, 3), (50, 4), (67, 1), (71, 1), (97, 1), (101, 3), (105, 2), (137, 1), (138, 4), (148, 6), (151, 2), (155, 1), (158, 3), (162, 4), (169, 1), (173, 2), (203, 1), (232, 12), (236, 1), (244, 9), (257, 1), (266, 1), (275, 2), (282, 1), (290, 2), (344, 1), (402, 1), (404, 3)]

query_lsi = lsi[query_bow]

print query_lsi

[(0, 7.5170080232286249), (1, 0.10900815862153138)]

index = similarities.MatrixSimilarity(lsi_vector)

sims = index[query_lsi]

print list(enumerate(sims))

[(0, 0.99971396), (1, 0.99625134), (2, 0.060286518)]

可以看到LSI的效果很好,一个高血压主题的文本与前两个训练文本的相似性很高,而与iOS主题的第三篇训练文本相似度很低。

END.

来源:数据挖掘入门与实战

推荐:python数据挖掘项目实战班

c1a98fd704c94266a9dc2dd3d46777f9_th.jpg

学习目标:

1、掌握主流数据挖掘编程工具Python和数据挖掘方法;

2、掌握常见数据挖掘原理,掌握聚类、分类、关联规则等常见模型和算法;

责任编辑:

Python中有多种方法可以实现简单的文本相似度分析操作,下面将详细介绍一种常用的方法。 一、准备工作: 1. 导入必要的库:从sklearn中导入CountVectorizer和cosine_similarity。 2. 定义文本列表:将要比较的文本存储在一个列表中。 二、数据预处理: 1. 实例化CountVectorizer:使用CountVectorizer将文本转换为词频矩阵,每个文本中的每个词都是一个特征。 2. 计算词频矩阵:调用fit_transform方法将文本列表作为参数传递给CountVectorizer实例,得到词频矩阵。 三、相似度分析: 1. 计算余弦相似度矩阵:将词频矩阵作为参数传递给cosine_similarity函数,得到文本之间的余弦相似度矩阵。 四、结果解释: 1. 解释余弦相似度矩阵:余弦相似度矩阵是一个对称矩阵,对角线上的元素都是1,表示文本与自身的相似度为最大值1;非对角线上的元素表示两个不同文本之间的相似度,值越大表示相似度越高。 示例代码如下: ```python from sklearn.feature_extraction.text import CountVectorizer from sklearn.metrics.pairwise import cosine_similarity # 定义文本列表 texts = ['这是一个文本。', '这是另一个文本。', '这是一个不同的文本。'] # 实例化CountVectorizer并计算词频矩阵 vectorizer = CountVectorizer() word_count_matrix = vectorizer.fit_transform(texts) # 计算余弦相似度矩阵 cosine_sim_matrix = cosine_similarity(word_count_matrix, word_count_matrix) # 解释余弦相似度矩阵 for i in range(len(texts)): for j in range(len(texts)): print(f"文本{i+1}与文本{j+1}的相似度为:{cosine_sim_matrix[i][j]}") ``` 这个示例中,我们使用CountVectorizer将文本转换为词频矩阵,然后使用cosine_similarity计算余弦相似度矩阵。最后,我们打印出每个文本与其他文本相似度
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值