无监督和有监督的区别_干货|全面理解无监督学习基础知识

8e10a1a977f271032629359a7c3df9da.png

一、无监督学习

无监督学习的特点是,模型学习的数据没有标签,因此无监督学习的目标是通过对这些无标签样本的学习来揭示数据的内在特性及规律,其代表就是聚类。与监督学习相比,监督学习是按照给定的标准进行学习(这里的标准指标签),而无监督学习则是按照数据的相对标准进行学习(数据之间存在差异)。以分类为例,小时候你在区分猫和狗的时候,别人和你说,这是猫,那是狗,最终你遇到猫或狗你都能区别出来(而且知道它是猫还是狗),这是监督学习的结果。但如果小时候没人教你区别猫和狗,不过你发现猫和狗之间存在差异,应该是两种动物(虽然能区分但不知道猫和狗的概念),这是无监督学习的结果。

聚类正是做这样的事,按照数据的特点,将数据划分成多个没有交集的子集(每个子集被称为簇)。通过这样的划分,簇可能对应一些潜在的概念,但这些概念就需要人为的去总结和定义了。

聚类可以用来寻找数据的潜在的特点,还可以用来其他学习任务的前驱。例如在一些商业引用中需要对新用户的类型进行判别,但是“用户类型”不好去定义,因此可以通过对用户进行聚类,根据聚类结果将每个簇定义为一个类,然后基于这些类训练模型,用于判别新用户的类型。


二、聚类的性能度量

聚类有着自己的性能度量,这和监督学习的损失函数类似,如果没有性能度量,则不能判断聚类结果的好坏了。

聚类的性能大致有两类:一类是聚类结果与某个参考模型进行比较,称为外部指标;另一种则是直接考察聚类结果而不参考其他模型,称为内部指标。

在介绍外部指标之前先作以下定义。对于样本集合,我们可以给每一个样本一个单独的编号,并且我们以

7e6774ef967e979e5b5ee45db21b437a.png

表示编号为i j 的样本属于同一个簇,这里 i可以避免重复。因此有

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值