前言:之前有很多小伙伴问过我,明明我之前学的口诀是加减不可换,乘除才可换,到你这里怎么就能等价替换了呢?本篇文章用汤萌萌老师上课时举的例子来解。
受制于知识认知的程度,我写的文章也有局限性,欢迎老哥补充
正文:
1.任何一条理论都有它的局限性
各位想想当初学减法的时候,3-5不会减,你问老师怎么做,老师会说这个减不动or大概简单给你说下关于负数的事情,∵在那个年纪对于理解负数比较难。
同样的牛顿三定理局限于宏观物体在速度远低于光速时的机械运动
对于专接本考试,难度不是特别大,考试内容也相对较小,关于求极限的题型,肯定能用这条口诀来做。
2.在加减条件条件下能随意替换吗?
首先提一句话
分子与分母为同阶数(次数)时在加减运算下可进行等价无穷小替换,乘除任意替换
举个例子
这种条件下就能替换,为什么?
因为在等价替换之后的分子分母的3x,x指数都是一次,不信?用一般方法解解
用什么方法?洛,洛,洛必达天下第一!!!
可能你会认为这个是巧合,接下来会再举几个例子证明这个观点
3.例题呈上来
对于这道题,我们会看到等价替换之后的分子分母每一项都是二次方,∴能替换
以及值得学的+n-n小技巧
常规方法留给各位老哥们来算吧,欢迎在评论区晒出你的计算过程or私信发给我吖
4.那什么时候加减不能替换呢?能否举一个反例
我这样做对吗?答案是肯定不对
先不考虑0/0是不是等于0的问题,分子中每一项都是一次,而分母是三次方
所以不能替换,那该怎么算?
tanx-sinx,这个式子有个小技巧就是提出tanx,里面的tanx变成了1,sinx/cosx=tanx,tanx与(1-cosx)之间是乘号,所以能替换,明白了吧
明明这条结论不对,那为什么在专接本考试之前还要写
其实我觉得也对,为了防止不该犯的错误,例如第四部分开头举得错误示范
专接本考试,考高等数学就一个小时答100分的卷子,由不得你犯不该错的错误
但在考研,求极限就需要理解我今天所讲的,当然了考研求极限很难方法也很多,例如泰勒公式,以及中值定理等等知识点综合起来求极限,学到老活到老吧。
对文章有什么疑问或错误,欢迎与我一起讨论
如果觉得文章还不错,点个打赏分享再走吧
笔耕不错,有你支持