开源代码 yolov3_MindSpore基于YOLOv3实现篮球检测模型实战

本文介绍如何使用ModelArts和MindSpore 1.0在昇腾910环境下实现YOLOv3篮球检测。通过PyCharm Toolkit进行本地代码编写,并利用预训练模型和数据集进行预测。文章详述了代码获取、ModelArts环境配置、预测过程以及视频处理的挑战和解决方案。
摘要由CSDN通过智能技术生成

“ModelArts + MindSpore”实战YOLOv3篮球检测

Copy攻城狮人狠话不多,学AI就到huaweicloud.ai,和“MM”一起玩转AI。

前言

大家好,我是Copy攻城狮胡琦,有幸参与华为业界首个全场景AI实战营。今天是MIndSpore 21天实战营的第四次课。提到物体检测,我最先想到的是YOLO系列,因为之前在华为云AI实战营中就接触过,其实现在都忘得差不多了:【2020华为云AI实战营】物体检测作业分享。正好借本次实战营的机会再来熟悉一下(其实到最后只是熟悉了一下opencv切割合并视频),本次实践将借助ModelArts、PyCharm ToolKit,基于昇腾910的MindSpore 1.0环境实现YOLOv3模型检测篮球比赛中的动作。是的,ModelArts的训练环境终于更新了MindSpore 1.0!Talk is cheap, show me the COPY!

准备

鉴于本次实践使用PyCharm Toolkit,意味着在本地用PyCharm编写代码,在PyCharm中使用ModelArts的插件上传代码到OBS并进行训练,因此您除了注册华为云账号、申请昇腾公测(很快就要商用了)、开通OBS,还需要配置本地的Pycharm Toolkit,本文就不详细阐述,操作比较简单,只需下载AK/SK配置到Pycharm

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值