
NO.07
ZEYI
06.2020
正文共: 2010字 28图预计阅读时间: 6分钟嘿喽,我是则已。这是stata的第七期学习。
前面学习了最小二乘回归分析,非线性回归分析都要求因变量是连续变量,但很多时候因变量是离散的,即1就是1,2就是2,没有1-2之间的取值。这时候需要用到logistic回归分析。划线部分是自己要研究的变量。logistic回归 分析
常用来进行logistic回归分析的方法有三种:二元logistic回归分析,多元logistics回归分析,有序logistic回归分析。
01二元logistic回归分析二元logistic回归分析往往处理因变量只有两种取值的情况,例如是否患病,是否下雨等。

本文介绍了如何使用Stata进行Logistic回归分析,通过实例展示了当概率阈值提高到80%时,模型预测准确度下降至75%的情况。此外,还提到了使用Probit形式构建回归模型的方法。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



