上面两点下面一个三角形_一点固定另两点在两直线上的正三角形

4decfb6a137b2035a6a026cd238ca8ae.png

一篇文章写了1978年全国高中数学竞赛的最后一题及其推广到矩形中得到的一些结果。但上文偏向于计算,本文准备从几何作图角度再说说这个问题。

b51bd2f2eda7828d4c0485d2ca779261.gif

我们先回顾一下,上篇文章说到:

7a98db89bfdd026f58ec7f8e38489ac8.png

1、给定正方形ABCD及AB上点G,在AD、BC上求作E、F使得△EFG为正三角形。

解:作图方法为:先作出正三角形ABM,对于AB上点G,过M作MG垂线与AD、BC交于E、F,则△EFG即为过G的正方形的内接正三角形。

这是因为∠GME=∠GAE=90°,于是A、G、M、E四点共圆.

∴ ∠MAG=∠MEG=60°,同理,

∠MBG=60°,即△MAB为正三角形.

显然本结论对于矩形也是成立的,进一步对于平行四边形ABCD呢?

2、给定平行四边形ABCD及AB上点G,在AD、BC上求作E、F使得△EFG为正三角形

64eaae306edaac0050017a4cdb67fae0.png

思路分析及解答:

老规矩,先假设已经作出满足条件的正三角形EFG。

7f723e11af9f0f9e7f29f4087aea68cc.png

联想到上题的证明,关键在于作出中点得到共圆,从而发现EF中点M为定点。本题中如果作出EF中点M,得不到共圆,后面就走不下去了。

再次回顾1中的证明,关键在于共圆!

从而在EF上“强行”作出点M,使得A,E,M,G共圆,

则∠GMF=∠DAB=180°-∠ABC,于是B,G,M,F四点共圆.

∴ ∠MAG=∠MEG=60°,同理,

∠MBG=60°,即△MAB为正三角形.于是M为定点。

6349356a4b1e20936d271198d8ea5162.png

从而作出正三角形△MAB,作△MAG外接圆交AD于E,EM交BC于F。则△EFG即为求作的正三角形。前面已经给出证明。

注:1)本题虽然是上题的推广,不难发现其本质和上题还是相同。都是要作出正三角形ABM,EF也恒过定点M,也是两个共圆,不同之处在于M不再是EF中点。

2)不难发现两圆是等圆,且互相过另一圆的圆心,这和前面写过的含有60度的三角形的性质与判定系列文章又有关系。

5d699e2ecc7437c9c837a2824c57fedb.png

类似于上篇文章,这里自然的问题是什么样的平行四边形能做出如图所示的正三角形?答案也是显然的,就是M位于平行四边形ABCD内部时可以作出。

再进一步想一下,上面的问题似乎意义不大,因为我们没有必要非要限制此正三角形EFG顶点都要在线段内部,在延长线上也未尝不可。

这样我们就能挣脱平行四边形的桎梏,让正三角形的三个顶点在三条直线AD、AB、AC上运动了。这样对于AB上每一个点G,都能在直线AD、BC上找到E、F,使得△EFG为正三角形。如下图所示:

e12c21bbf2d54cec213186add5856c92.png

类似于上篇的第一题,这样的正三角形边长显然可以任意大,故没有最大值;但是有最小值——两条平行直线间的距离。

这样的正三角形必然存在了,那下面进一步的问题当然是:这样的正三角形有几个?即

3、给定平行四边形ABCD及AB直线上点G,求作在直线AD、BC上的点E、F,使得△EFG为正三角形,求这样的△EFG的个数。

4f648a7b1b624547c9e3380eeabcf243.png

由对称性,不难想象,正三角形ABM在直线AB上下各有一个,因此所求作的正三角形也有两个,如上图所示:EFG,E’F’G即为所求。

由图可知,显然MAB,M’AB关于AB对称,但是两个正三角形EFG,E’F’G并不关于AB对称。看图感觉两个正三角形似乎全等,这个也是不难证明的。

这是因为由以上作图过程知

A,E,M,G共圆,A,E',M',G共圆,

则∠GEA=∠GMA=∠GM'A=∠GE'A,故GE=GE'.

到了这里,我们发现其实四边形只是表象,本题关键是:

4、作出一个正三角形EFG,使得其一个顶点G固定,另两个顶点E、F分别在两条平行的直线上运动。

一个作法就是按上述解法,过此点G任意作一条直线与两直线交于A、B,作正三角形ABM,

GAM外接圆交A所在直线于E,EM交另一条直线于F,则三角形EFG即为求作的正三角形,当然这样的正三角形有两个,而且是全等的。

6a149b43f104120b0b921b74143ea6c8.png

为了更好看,本题也可以叙述为:

给定三条平行线,用尺规在三条线上面各找一点EFG,使其构成正三角形。

这个问题是经典问题,前段时间微信好友“西昌新高度创始朱小松”问到这个问题,我就决定写一篇文章叙述此题的前世今生。

到这里自然还会提出一个问题,此正三角形由三条平行线决定,边长如何定量的表示呢?我编过这样一道初中中考级别的问题:

e3fd2e85f0acfd03b3ea7d6ffcf6531a.png
89eebaa2014ba6d79c0e19376e8954db.png

思路分析1:作出距离,利用勾股定理,列出方程并解方程即可。

29b6f2186982317c2e72d5dda470f288.png

解法1:如图,作出距离,

由勾股定理得到:

885eb6fec287902097bdf3058174e2fb.png

思路分析2:想到上述第2题作图方法,找到AC、HI中点M、T,用勾股定理用a,b算出BM,即可得到x表达式。

ff9d276fde1e5c2accc59a1f480bcb38.png 78b9187539c068b2a21f489e9b84c123.png

注:1)解法1思路简单,自然,不过方程似乎不太好解,对于初中学生是一个考验,不过通过将根式移项平方,最后其实是一个一次方程,并不算复杂。不过算是一个比较综合的初中题,考察学生的勾股定理、解分式方程等的综合能力,难度中等偏上,是一个不可多得好题。

2)解法2利用上述第2题结论,计算量迅速下降,很快能得到结果,算是利用几何特征简化运算量的典范。

3)本结论一方面定量的描述了此正三角形。另一方面也证明了所做的正三角形的边长是唯一的,以B为圆心此长度画圆与最上面的直线交于A,A’,即可作出所求的正三角形。

4)此题中作此正三角形的作法很多。

5d699e2ecc7437c9c837a2824c57fedb.png

下面还有进一步的问题,对于问题4,如果两条直线不平行呢?

6、给定直线m,n和直线外定点A,若m交n于E,在m、n上求作B、C,使得△ABC为正三角形;

f06002654523130e3b68ce16e8730175.png

思路分析:老规矩,还是假设正三角形ABC已经作出。一个自然的思路是希望将直线相交的情形转化为直线平行的情形解决。这样就可以过A作BE平行线交CE于D。即可将本题转化为上题,以下按图索骥即可。

f0c3d071f2e78891c32d062a32caf6a1.png

解:过A作AD//m,作正三角形DEF,连接AF交m于B,作∠BAC=60°其中C在n上,则△ABC为正三角形。

证明:依题意∠BAC=60°=∠FDE,则AFCD共圆,又AD//m则∠BEC=∠ADH=∠AFC, 则BFCE共圆,故∠ABC=∠FEC =60°,故△ABC为正三角形。

这样就能彻底解决:一点固定另两点在两直线上的正三角形的尺规作图问题。本题是前几年本人研究上篇文章第1题得到的一些结果,在2017年全国数学竞赛命题人研讨会上讲过这个题目。后来发表在[1]上。

这里当然还有一个相关的问题,对于任意三角形如何作出其内接正三角形?即

552bc3dc9d88ce34acd144e12479ec4a.png

7、给定△ABC,在三边AB、BC、CA上作出C’、A’、B’,使得△A’ B’ C’为正三角形。

本题点当然最好也拓广到直线上,作法可以利用第6题的解法,也有其他的解法,这样的正三角形显然有无数个,下面想说一下所有的正三角形的公共性质。

对密克点比较熟悉读者知道,上面的三个三角形AB’C’, A’BC’, A’B’C外接圆交于一点S,这个倒角证明也是显然的。故∠ASB=∠ACB+∠CAS+∠CBS

=∠ACB+∠B'C'S+∠A'C'S=∠ACB+∠B'C'A'

=∠ACB+60°,为定值,同理∠CSB=∠CAB+60°,

从而S为定点,此点一般称为三角形ABC等力点。

7480658b54157601e6ad5cd70b2f1892.png

因此本题另一种作法为:不难尺规作出S,对于给定点A’, △A’SB外接圆交AB于C’, △C’SA外接圆交AC于B’,则△A’ B’ C’即为求作的正三角形。

比较有意思的是,当AC//BC,即C为无穷远点时,∠ACB=0°,∠ASB=60°,∠A’S’B’=180°-∠ACB =180°,即本题退化为问题2。

5d699e2ecc7437c9c837a2824c57fedb.png

本文解决了一点固定另两点在两直线上的正三角形的尺规作图问题。当然本问题还能进一步推广到空间中,感兴趣的读者可以自行探究。

参考文献

1 数学奥林匹克问题  《中等数学》2018年第8期  天津师范大学出版社 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值