离散数学反对称关系_离散数学完全自学指南

96eb6855e6223c16dbf56eb9ef61abc3.png
  • 前言:本文适用于有一定离散数学基础的同学总复习和没有学习过离散数学想要自学的同学参考使用

  • 数理逻辑

永远赋值为真的式子为重言式

永远赋值为假的式子为矛盾式

至少有一个式子使其为真的时候为可满足式

文字:命题变项及其否定的总称

简单析取式:由有限个文字析取组成的

简单合取式:由有限个文字合取组成的

析取范式:有限个合取析取而成

合取范式:有限个析取合取而成

每个变元都出现一次的简单合取式都为极小项

每个变元都出现一次的简单析取式都为极大项

主析取范式:极小项的析取

主合取范式:极大项的合取

常用化极小项,极大项的方法

例如有三个命题变项:

若要把

化为主合取范式

利用分配律

若要把

化为主析取范式
  • 方法1

  • 方法2

观察这个公式为主合取范式,我们通过插缝观察得

与非

或非

用与非可以表示所有的运算符

或非表示所有的运算符

证明方法

  • 直接证明
  • 附加前提证明
  • 归谬法

结论为蕴含式的时候用附加前提证明

归谬法假设结论不成立,推理出和题目条件有矛盾的地方

  • 一阶逻辑(谓词逻辑)

量词(全称量词

and存在量词
)+ 变元 +谓词

谓词

表示
个变元之间的关系

1e3cd846560022cc08abe94c84599b36.png

一阶逻辑式通过代换利用基本的等值式

分配等值式

Correct

量词辖域收缩与扩张等值式

易错:

指导变项
为相应
量词(
or
辖域,辖域中
的出现称为
约束出现,辖域中其他变量出现称为 自由出现

例:

是指导变项,
的辖域为
是自由出现,而第一个
是约束出现

闭式:

中若A中无自由出现的变元则称
为封闭的合式公式,简称闭式

给函数变项符号和谓词变项符号“赋值”就是解释

任何解释的任何赋值下为真:永真式

任何解释的任何赋值下为假:矛盾式

实例代换

利用

代换关系

然后判断

的式子的关系

求前束范式方法

前束范式是将变元放到最前面(常用换名规则)量词前面不能有非

辖域不同要用换名规则

例:求此式的前束范式

换名规则

求前束范式的关键就是要记住量词辖域收缩与扩张等值式,以及注意易错点


  • 集合论

空集是

是任何非空集合的子集

三个符号的区分

“属于”是指元素和集合的关系

例:

"真包含

"和“包含
”是指集合和集合之间的关系

且可以写成

但若

则只能写成
or

全部自己的个数为

(n为元素个数)

幂集

的全体子集构成的集合称为
的幂集记作

例:

先写出

的所有子集(共
个)

集合的基本运算

,并
,相对补
,绝对补
,对称差

分别定义

个集合简单的交并
and

34eda12eaad2d5403b92611a04e8489c.png

绝对补

为全集,
,则

对称差

证明一般用定义证明或利用恒等变换

集合的计数

公式
(表示
中与
互素的个数)的值

(其中
的质因子)
  • 二元关系和函数( 重点)

的充要条件是

笛卡尔积

笛卡尔积与运算关系的证明利用定义证明

二元关系

全域关系

恒等关系

关系矩阵

上的关系,矩阵

关系的运算

定义域

值域

特殊关系

c32b26f15f9680a4b3b52eeff3581cb7.png

次幂

(1)

(2)

进而有归纳法得

重重点,关系的性质(下图中

上的关系)

以下5种性质一定要掌握( )

fb328f42186b81ef218f76ba2df53e8e.png

若要证明上面的任意的性质,需要严格按照定义来看

常见关系的性质的延申

27cb3febaeb0f3a2923f3f39cc250e94.png

关系的闭包

集合

自反闭包(

对称闭包(

传递闭包(

矩阵

自反闭包(

对称闭包(

传递闭包(

自反闭包( 哪一个节点没有环就加上环)

对称闭包( 单向边改为双向边)

传递闭包( 使其连通)

等价关系和偏序关系

  • 等价关系(
    是自反的,对称的,传递的

等价类:满足等价关系的元素的集合,简记

商集,等价类组成的集合,简记

划分

为一个划分
  • 偏序关系(
    是自反的,反对称的,传递的

记作

下面有几个定义需要大家注意

4659102dd1e8efc6251fa3a9c37b4667.png

0345a4a69ae822c88c0d514cbbdaa26d.png

这个地方主要就是要区分最小元和极小元,最大元和极大元的区别

下面我们来看一个图形

8d90293a8babed5c814f83b64f45dd55.png

此时我们依照这个哈斯图可以写出其对应的偏序关系

极小元为:

极大元为:

无最小元,无最大元

无上界,无下界

无上确界,无下确界

函数

定义:设

为二元关系,若
都存在
唯一
使
成立,则称
为函数

相关概率及其结论

  • 函数相等
    条件
    • 均有
  • 为函数(
    • 则称
      的函数,记作
    • 有集合
      (
      )(所有以
      为定义域
      为值域函数关系的集合)
  • 函数的像
    • 下的像:
      的函数的像
  • 函数的分类
    • 满射:
    • 单射:唯一的
      对应唯一的
    • 双射:即使单射也是满射
  • 掌握构造单射,满射,双射的条件
  • 函数复合相关定理
    • 都是满射/单射/双射则
      也是满射/单射/双射
    • 证明满射定义,证明单射假设
  • 反函数
    • 单射函数一定有反函数,且其反函数使双射函数

有关图的相关概念

有几个顶点(Vertex)就称为几阶

零图:没有边即(Edge=空集)

平凡图:一阶零图

简单图:没有平行边和环

匹配的相关概念:

匹配(边独立集): 任2条边均不相邻的边子集

极大匹配: 添加任一条边后都不再是匹配的匹配

最大匹配: 边数最多的匹配

匹配数: 最大匹配中的边数

中一个匹配

被M匹配:

饱和点:
中有边
与关联

为M非饱和点:
中没有边
与关联

为完美匹配:
的每个顶点都是
饱和点

图的同构:两个图展开以后长一个样

判断条件:1.边数相同,顶点数相同

2.度序列相同 d(v1),d(v2)….

3.顶点关联的顶点数相同

完全图:每一个顶点都相邻 记作Kn

子图:子图的顶点属于原图的顶点

子图的边属于原图的边

顶点集:由原图所有顶点组成的图,没有边

导出子图:顶点集V' 和 两个顶点都在V'中的边构成的图

生成子图:包含原图的所有顶点,边不一定

简单通路:每个边只经过一次的通路

初级通路:每个顶点只经过一次的通路

连通分支:有连通关系构成的导出子图

(连通分支数的个数记作P(G))

G-v 从G中删除V这个节点和其关联的边

点割集 :删除这个点之后图就感觉被切断了一样(最小的切断)

G-e : 从G中删除e这条边

边割集:删除这个边之后图就被切断了(最小的切断)

平面图中面的相关概念

G的面: 由G的边将平面划分成的每一个区域

无限面(外部面): 面积无限的面, 用

表示

有限面(内部面): 面积有限的面, 用

表示

的边界: 包围
的所有边构成的回路组

最短路径Dijkstra算法

树的相关概念

有向树: 基图为无向树的有向图

根树: 有一个顶点入度为0, 其余的入度均为1的

非平凡的有向树

树根: 有向树中入度为0的顶点

树叶: 有向树中入度为1, 出度为0的顶点

内点: 有向树中入度为1, 出度大于0的顶点

分支点: 树根与内点的总称

顶点

的层数: 从树根到
的通路长度

树高: 有向树中顶点的最大层数


图的相关结论希望记住可以帮助解题

握手定理:

任意无向图和有向图的所有顶点度数之和都等于边数的2倍, 并且有向图的所有顶点入度之和等于出度之和等于边数

对于任意的图,奇数度数的顶点的个数一定是偶数

完全图相关结论:

阶无向完全图
: 每个顶点都与其余顶点相邻的
阶无向简单图

总边数:

总度数为

阶有向完全图: 每对顶点之间均有两条方向相反的有向边的
阶有向简单图

总边数:

二部图相关结论:

判断是否为二部图

无向图

是二部图当且仅当
中无奇数圈

欧拉图相关结论:

判断欧拉图

无向图

为欧拉图当且仅当
连通且无奇度顶点.

是半欧拉图当且仅当
连通且恰有两个奇度顶点.

有向图

是欧拉图当且仅当
连通且每个顶点的入度都等于出度.

是半欧拉图当且仅当
连通且恰有两个奇度顶点, 其中一个入度比出度大1, 另一个出度比入度大1, 其余顶点的入度等于出度.

哈密顿图相关结论:

判断哈密顿图

定理1

e961094c47aee0e1d84800d5e5260556.png

定理2

阶简单图,且对每一对顶点

则为哈密顿图

定理3

阶简单图,且对每一对不相邻的顶点

定理4

阶简单图,若
则其一定有哈密顿圈

定理5

不是哈密顿图.

时,
是哈密顿图, 而是
半哈密顿图.

定理6

阶有向图
中, 如果所有有向边均用无向边代替, 所得无向图中含生成子图
, 则有向图
中存在哈密顿通路

平面图相关结论:

是非平面图

为平面图, 则
也是平面图; 若
为非平面图, 则
是非平面图.

平行边和环不影响平面性

均为非平面图

平面图各面的次数之和等于边数的2倍(

是简单平面图, 并且在任意两个不相邻的顶点之间加一条新边所得图为非平面图, 则称
为极大平面图

极大平面图:若

是简单平面图, 并且在任意两个不相邻的顶点之间加一条新边所得图为非平面图, 则称
为极大平面图

极小非平面图:若

是非平面图, 并且任意删除一条边所得图都是平面图, 则称
为极小非平面图

欧拉公式:

(
为连通分支数)

推广:一个连通的平面图

(
)个顶点及
条边,则
(此结论常用来判断该图是否为平面图)

同胚:一个图的边上插入一些新的顶点而得到的图

定理1:一个图是平面图当且仅当其不包含同胚于

的子图

条边的连通平面图, 每个面的次数不小于
, 则有

(

为连通分支数)

怎么画对偶图

每条边必须经过一次

树的相关结论:

Huffman算法

最佳前缀码(利用以上算法)左0右1

行变2叉树

中序行遍法: 左子树、根、右子树(左,根,右)

前序行遍法: 根、左子树、右子树(根,左,右)

后序行遍法: 左子树、右子树、根(左,右,根)

波兰符号法:按前序行遍法访问表示算式的2叉有序树, 并舍去所有括号

逆波兰符号法(后缀符号法): 按后序行遍法访问表示算式的2叉有序树, 并舍去所有括号


完完完完完完完完完完

  • 1
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 离散数学是一门研究离散数学结构及其应用的数学学科,其涉及的内容非常广泛。离散数学是计算机科学、信息科学、通信、金融、城市规划等学科中不可或缺的一部分,对于计算机科学的程序设计、数据分析和算法设计有着非常重要的影响。 《离散数学》(原书第七版)是左孝凌编写的一本离散数学教材,该书主要涵盖了集合、关系、命题逻辑、谓词逻辑、图论、树、计数、离散概率等内容。这本教材在深入浅出的讲解离散数学知识的同时,也提供了丰富的例子和习题来巩固所学内容。 此外,该教材强调了离散数学在计算机科学和信息技术中的应用,包括搜索算法、网络流量、数据加密和编码等。该教材的优点在于其语言通俗易懂,思路清晰,适合初学者阅读和参考。同时,该书还提供了许多习题及其解答以及美国各大名校的历年考试题,方便同学们进行自我测试和巩固学习。 总之,该教材对于学习和研究离散数学的人们来说是一本非常优秀的教材,是离散数学领域的主要参考书之一。 ### 回答2: 离散数学左孝凌pdf教材是一本很好的教材,它涵盖了离散数学中的许多重要概念和知识点,包括集合、逻辑、图论、组合数学等多个方面。 这本教材的语言简洁明了,且内容极为清晰易懂,非常适合初学者使用。其中的例题和习题也很充足,有助于学习者更好地掌握相关知识和技能。 此外,离散数学左孝凌pdf教材注重理论知识和应用技能的结合,不仅仅强调概念的定义和公式的推导,还重视学生对理论知识的灵活应用,使学生能够更好地应对实际问题。 总之,离散数学左孝凌pdf教材是一本很好的教材,不仅适合大学离散数学课程的学习,也适合自学者使用。它将对学生的离散数学学习和应用能力的提高起到积极的作用。 ### 回答3: 离散数学是计算机科学中非常重要的部分之一,也是数学的一个分支。它的主要研究对象是离散的结构和离散的对象,如整数、点集、有限集合、图形等。离散数学不仅是理论基础,也是应用数学和计算机科学的基础。因此,对于学习计算机科学的人来说,离散数学是一个非常必要的学习内容。 而左孝凌编写的离散数学教材是非常不错的一本教材。这本教材从图论和关系代数开始,逐步引入了离散数学的各个方面,如布尔代数、数论、图论、关系代数、逻辑、树和图、计算理论等。在介绍各个概念和定义时,教材都会给出详细的说明和例子,对于学生来说非常友好和易懂。 此外,教材中也包含了丰富的练习题目和习题答案,可以帮助学生加深对于概念的理解,并且提高解决问题的能力。教材的内容和组织都很合理,整个学习过程逻辑清晰,非常容易上手和掌握。因此,对于想要学习离散数学的人来说,这本教材非常值得一看。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值