matlab中的级数怎默算_从微分方程的级数解到两个特殊方程(4):贝塞尔方程(二)...

c9e456980a2bf6accd8e7fc1dc06e83b.png

为什么说,贝塞尔方程是很重要的方程?“除初等函数外,在物理和工程中贝塞尔函数是最常用的函数”?这一篇就是针对这个问题的。接下来会发现,有一类很广泛的的方程都可以化成贝塞尔方程。对于这类方程,也就“一劳永逸”了。

不过最基本的一点是,贝塞尔方程是二阶变系数微分方程,至少来说不会和常系数微分方程弄混。


正文

在此之前先来看一下最基本的变形:

很容易就想到:

,则:

代入则有:

有通解:

代回

,就有:

接下来的基本上都是在物理工程上的运用了。不过基本上不会给出方程的导出过程,只给出结果。

在此之前先回忆一下前面说过的方程,毕竟之前说过“前面出现的很多方程都可以转化为这个方程”。

例:

最前面的

就是在
时的方程。这个方程称为气体方程。实际上除此之外
也是气体方程。它被用于描述光或声波在地球表面的衍射、空气动力学、以及细直状柱体在其自重影响下的弯曲。(应该还有个“等”)

令:

,则有:

代回则有:

,再代入
有:

即标准形式的贝塞尔方程。易见得

不是整数。可以只用第一类贝塞尔函数表示:

最后代回原来的变量,有:

这就是最后的通解。

不出现级数,是因为事先准备好了级数。就像

一样。如果都是习惯了、熟悉了的话,谁也不会觉得别扭。谁又会总是在使用三角函数前考虑到它是超越函数?级数定义的函数?然后就心生别扭呢?

然后就是为什么要选择这样的变形?具体的选择…只能说就是这样。不过对于符号的选择,

的代换是能够接受的。
的代换里面还出现了
,这种选择是考虑到最后求出
之后,即代换回
。这样的话就可以把关于
直接除过去即可得到全部关于
的结果。若使用
那么除过去之后还要再次代换掉
,这样的话,渴望得到通解的心还要被最后的代换所阻隔(雾)。实际上二者是等价的。

至于最后求出的解的图像的话,大概也能猜到就是波浪的情况:

c3bd60cdef081bed17eda0a695bb6180.png
C1=C2=a=1的时候

气体方程为什么会有“细直状柱体在其自重影响下的弯曲”这样的情况?一个例子是:

例:一根匀质细柱,垂直于地面并下端嵌入。如果其长度远远超过一确定的临界值,则它会在自重影响下弯曲。在点

处相对垂直方向的偏转角
可推出如下方程:

其中

是杨氏模量,
是横截面转动惯量,
为线密度常数,
是直柱上点
距离地面的距离。

1f24cba3a7ae31d551ed6db17f0b13a6.png

做代换:

,再令:
那么就有:

这就化成了气体方程。不再解。

例:

时,这也是前面文章出现过的方程。并且是作为在规则奇点展开只能得到一个级数解的例子出现。现在重新再来审视这个方程。

令:

,则有:

代回,则有:

,再代回
,有:

即为

时候的贝塞尔方程。这种情况下的确是只能求得“一个”第一类贝塞尔函数的。但是可以用哪个“万能的通解”:

再代回原变量,就有:

例:

考虑一下这个微分方程。看上去是气体方程变成了平方项。

令:

,则有:

代入,则有:

,代入
有:

即为

的贝塞尔方程。是没有必要用第二类贝塞尔函数的:

既然都放在这里了,也不会闲着只是做一道改过的练习题(输入公式很累的啊,肯定是另有图谋)。

实际上,对于

,依旧视
为自变量,但做代换:

则有:

代回则有:

时,就有:

某本教材在表述“即使很简单的微分方程也不一定能通过初等解法求解”时,就举了这个方程的例子(不过我一下子找不到是那本教材了,知道的同学在评论区说一下吧)。现在终于是了解了当时我想知道怎么求解这个方程的“夙愿”。

实际上反过来,就是求解这个微分方程的过程。现在已经求出了

,那么根据
之间的关系,很容易就得到:

现在求出

即可。求
则需要求
,利用公式:

以及:

则:

(注意,那两个贝塞尔函数的导数是用不一样的公式代换的)最后,相除后化简,有:

一阶微分方程的通解应当只有一个任意常数,消掉一个常数得到通解:

这就是方程

的通解。图像为:(
的时候)

0354fdac8eb92345183c994f69e2e478.png
这个是用Mathematic画的…MATLAB一直显示错误/捂脸

广义贝塞尔方程

在上面看见,似乎很多二阶变系数的方程都可以化成贝塞尔方程,上面出现了的就有:

这些都是系数的

的幂次的情况。那么是不是在一定限制的幂次下都可以化成贝塞尔方程?在此只给出最后的结果。实际上,方程:

都可以转化成贝塞尔方程(实际上上式若

则变成柯西-欧拉方程)。这个方程又被称作
广义贝塞尔方程。

根据那么多次的代换经验,将这个方程化成贝塞尔方程不会太难。依旧假设具有和上面一样的代换。一样的,令:

有:

代入,化简(第一步真的不想再写出来了…):

由于要变成标准贝塞尔函数的形式,发现最相似的就是第一项。显然,乘

第一项就出来了
:

第一项就是

了,需要的是对比后面的项,依次对比后面的
的系数与指数,就有:

从下到上可以很顺利地解出设出来的三个

这里也可以看出来,设的系数是没有

的。也就是与广义贝塞尔方程括号里面的“常数项”是无关的。而且出现了
,这也是要
的原因。

除此之外还有一个很重要的

又可以看见这个

是与
是无关的…(记住这些并没有什么用)

那么以后看见这样的变系数二阶微分方程,第一反应就是可以化成贝塞尔方程然后愉快的写出通解了!实在是想不起来怎么代换的也没有关系,知道大致的代换形式,也就是相当于重新推导一遍而已。实际上掌握要点的话推导过程也并不困难。

最后一个例子

上面出现了的都是幂次的式子。但这并不意味着只能是上面的广义贝塞尔方程才能化成标准形式的贝塞尔方程。

例:

(似乎)这是一种弹簧做无阻尼运动的数学模型。

实际上自变量若做代换:

,即可化成:

具体的过程就不再写出来了。而这后面又有什么“广义的贝塞尔方程”…我也不知道。我感觉是有的,但是却没找到相应的资料。(真是遗憾)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值