差异表达基因热图怎么看_GEO芯片找差异表达基因 画火山图|数据挖掘

本文介绍了如何使用R包limma从芯片数据中找出差异表达基因,并详细阐述了limma的工作流程,包括核心步骤如线性模型构建、误差校正和结果导出。此外,还提及了绘制火山图来展示分析结果的重要性。
993a66f05a6a0e6d34e19eec6ca360bd.gif

今天讲讲如何从芯片数据中寻找到差异表达的基因。

首先,我们得知道为什么我们需要找这些差异表达的基因 (DEGs)。拿肿瘤来说,在肿瘤的发生发展过程中,很多平时沉默的基因开始高表达,而原本那些正常表达的基因,它们的表达量可能就会下调。也恰恰这些与平时正常基因表达量发生变化的基因,它们的存在启动了肿瘤的发生。所以,如果我们要研究肿瘤发生的机制,研究这些差异表达的基因是必不可少的。

今天介绍一下经典R包limma。limma既可以用于分析芯片数据,也可以分析NGS测序的数据,其核心是通过线性模型去估算不同分组中基因表达量的均值和方差,从而进行差异分析。

01

核心知识点

limma需要的输入文件有:
  • 表达矩阵 (exprSet)(这个容易获得),芯片数据可以通过exprSet(),常规的转录组可以通过read.csv(),read.table()等导入

  • 分组矩阵 (design) :就是将表达矩阵的列(各个样本)分成几组(例如最简单的case-control【通过model.matrix()得到】

  • 比较矩阵(contrast):意思就是如何指定函数去进行组间比较【通过makeContrasts()得到

<think>好的,我现在需要帮助用户分析GEO芯片数据中的差异基因,使用生物信息学工具或编程语言如R或Python。首先,我得回忆一下处理这类问题的常规流程。通常,处理GEO数据包括数据获取、预处理、差异分析这几个主要步骤。 用户提到的是GEO数据库,所以我应该先考虑如何从GEO下载数据。R中的GEOquery包是一个常用的工具,可以直接通过Accession number获取数据集。比如使用getGEO函数下载数据,这可能涉及到用户输入GSE编号,比如GSE12345。接下来,数据预处理可能包括归一化、去除批次效应、处理缺失值等。例如,对于Affymetrix芯片数据,可能需要使用affy包进行RMA归一化。 然后差异分析部分,常用的方法有limma包,适用于芯片数据。limma通过线性模型和贝叶斯检验来差异基因。步骤可能包括构建设计矩阵和对比矩阵,然后进行lmFit、eBayes等处理。最后用topTable提取差异基因。用户可能需要调整p值和logFC的阈值,比如p<0.05和|logFC|>1。 另外,用户可能对结果的可视化感兴趣,比如火山等。用ggplot2或pheatmap包可以完成这些表。还有,用户可能需要注释基因,比如转换探针ID为基因符号,这时候可能需要AnnotationDbi包和对应的平台注释包。 如果用户使用Python,可能需要用到pandas、numpy处理数据,而差异分析可能用scipy.stats进行t检验,或者使用专门的库如bioinfokit。不过Python在生物信息学方面可能不如R的包丰富,所以可能推荐R更合适。 还需要注意数据质量控制,比如检查样本间的相关性,PCA分析查看批次效应,是否需要使用sva包处理批次效应。另外,差异基因的筛选标准,用户可能需要根据具体情况调整,比如使用校正后的p值(FDR)。 用户可能遇到的问题包括数据下载失败,这时候可能需要检查网络或者使用镜像。另外,不同平台的数据处理方式不同,比如Affymetrix和Illumina芯片的处理步骤有差异。还有,注释文件是否正确,探针ID是否能正确转换为基因符号。 最后,生成相关问题时要考虑用户可能的后续步骤,比如富集分析、功能注释,或者使用其他工具如DAVID、GOrilla进行通路分析。还可能涉及数据可视化工具,如Cytoscape等。另外,性能优化、不同差异分析方法的比较,以及结果验证方法如qRT-PCR也可能是用户关心的问题。</think>以下是如何使用R语言分析GEO芯片数据差异基因的完整流程: ### 一、数据获取与加载 1. 安装并加载GEOquery包: ```R if (!require("BiocManager")) install.packages("BiocManager") BiocManager::install("GEOquery") library(GEOquery) ``` 2. 下载数据集(以GSE1009为例): ```R gset <- getGEO("GSE1009", GSEMatrix=TRUE, AnnotGPL=TRUE) expr_data <- exprs(gset[[1]]) # 获取表达矩阵 ``` ### 二、数据预处理 1. 标准化处理: ```R library(limma) expr_data <- normalizeBetweenArrays(expr_data) # 标准化 ``` 2. 探针注释转换: ```R platform <- annotation(gset[[1]]) BiocManager::install(paste0(platform, ".db")) library(paste0(platform, ".db"), character.only=TRUE) probe_ids <- rownames(expr_data) gene_symbols <- mapIds(get(platform), keys=probe_ids, column="SYMBOL", keytype="PROBEID") ``` ### 三、差异分析 1. 构建设计矩阵: ```R pdata <- pData(gset[[1]]) # 获取表型数据 group <- factor(pdata$characteristics_ch1) # 根据表型分组 design <- model.matrix(~0 + group) colnames(design) <- levels(group) ``` 2. 差异分析流程: ```R fit <- lmFit(expr_data, design) cont_matrix <- makeContrasts(trt_vs_ctrl = Group1-Group2, levels=design) # 定义对比组 fit2 <- contrasts.fit(fit, cont_matrix) fit2 <- eBayes(fit2) ``` 3. 提取差异基因: ```R diff_genes <- topTable(fit2, coef=1, number=Inf, p.value=0.05, lfc=1) # p<0.05且|logFC|>1 ``` ### 四、结果可视化 1. 火山绘制: ```R library(ggplot2) ggplot(diff_genes, aes(x=logFC, y=-log10(adj.P.Val))) + geom_point(aes(color=abs(logFC)>1 & adj.P.Val<0.05)) + scale_color_manual(values=c("grey", "red")) ``` 2. 绘制: ```R library(pheatmap) top50 <- rownames(diff_genes)[1:50] pheatmap(expr_data[top50,], scale="row", annotation_col=pdata[, "group", drop=F]) ``` ### 五、验证与保存 1. 保存差异基因列表: ```R write.csv(diff_genes, "DEG_results.csv") ``` 2. 富集分析预备(使用clusterProfiler): ```R BiocManager::install("clusterProfiler") library(clusterProfiler) ego <- enrichGO(gene = diff_genes$GeneSymbol, OrgDb = org.Hs.eg.db, ont = "BP", pvalueCutoff = 0.05) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值