中文停用词文档_基于word2vec训练专有的中文词向量

本文介绍了词向量的概念及其在NLP任务中的作用,使用jieba进行中文分词,并移除停用词。通过复旦分类文本语料库训练word2vec模型,探讨了训练参数,并提出了词向量验证的方法。
摘要由CSDN通过智能技术生成

 词向量是词汇表的单词和短语和实数向量的映射结果,词向量已经被证明可以提高NLP任务的性能,有助于更好的完成语法分析和情感分析。本文主要是基于开源的工具完成一个定制化的词向量的训练。

01

词向量的定义

词向量(Word embedding),又叫Word嵌入式自然语言处理(NLP)中的一组语言建模和特征学习技术的统称,其中来自词汇表的单词或短语被映射到实数的向量。从概念上讲,它涉及从每个单词一维的空间到具有更低维度的连续向量空间的数学嵌入。

生成这种映射的方法包括神经网络,单词共生矩阵的降维,概率模型,可解释的知识库方法,和术语的显式表示单词出现的背景。

当用作底层输入表示时,单词和短语嵌入已经被证明可以提高NLP任务的性能,例如语法分析和情感分析

百度百科

02

中文分词

国内主流的中文分词工具

  • jieba(结巴分词)                         免费使用

  • HanLP(汉语言处理包)              免费使用

  • SnowNLP(中文的类库)             免费使用

  • FoolNLTK(中文处理工具包)      免费使用

  • Jiagu(甲骨NLP)                        免费使用

  • <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值