做面板数据分位数回归模型_Stata:横截面及面板分位数回归

分位数回归方法从1978年提出后,无论从理论还是应用方面都得到了很大的发展。它不仅能够拓展模型使用的范围,而且还能够度量出回归变量对分布的影响,以及分布的尾部特征,较之经典的最小二乘法更具有优势。随着分位数回归理论和算法的不断发展,分位数应用的领域更加广泛。

一、分位数回归分析解决实际问题的研究背景

传统的线性回归模型具有悠久的历史,其中经典的最小二乘回归应用最为广泛。它描述了因变量的条件均值分布受自变量X的影响过程。最小二乘法是估计回归系数的最基本的方法。如果模型的随机误差项来自均值为零,且方差相同的分布,那么回归系数的最小二乘估计为最佳线性无偏估计如果随机误差项是正态的,那么回归系数的最小二乘估计,与极大似然估计一致,均为最小方差无偏估计。此时它具有无偏性、有效性等优良性质。

但是,在实际的经济生活中,这种假设常常得不到满足。例如当数据中存在严重的异方差,或者存在厚尾、尖峰等情况时,最小二乘法的估计将不再具有上述的优良性质,而且稳健性极其糟糕。特别的,对于大量数据而言,应用最小二乘回归只能得到一条回归线,而一条回归线所能反映的信息量是有限的。因此,人们在使用经典的线性回归的同时,也一直在不断的探索更新更好的回归方法。

为了弥补最小二乘法在回归分析中的缺陷,有科学家提出了分位数回归,分位数回归相对于最小二乘回归,应用条件更加宽松,挖掘的信息量更加丰富。它依据因变量的条件分位数对自变量X进行回归,这样得到了所有分位数下的回归模型。因此分位数回归相比普通的最小二乘回归,能够更精确的描述自变量X对于因变量Y的变化范围,以及条件分布形状的影响。分位数回归能够捕捉到分布的尾部特征,当自变量对因变量分布的不同位置产生不同的影响时,它就能更加全面的刻画分布的特征,从而得到全面的分析,而且分位数回归系数估计比最小二乘回归系数估计更加稳健。

二、分位数回归stata操作汇总

本部分综合整理自stata该命令介绍

  • 4
    点赞
  • 50
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值