CIC滤波器设计原理总结

本文详细介绍了CIC滤波器在数字信号处理中的应用,包括升采样和降采样的原理,以及CIC滤波器的幅频响应和级联结构。通过实例展示了3倍升采样和降采样对信号频率的影响,并提供了CIC滤波器的MATLAB仿真代码,帮助读者理解其工作机制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、CIC滤波器应用概述

在通信数字信号上下变频时,经常会用到对数字信号的升采样和降采样,即通过CIC数字速率器实现变采样率,下面将总结CIC滤波器设计原理,便于FPGA实现参考。

二、基本原理理解

在研究CIC滤波器前,需要真正弄明白并理解一些基本概念,具体整理如下。

1、模拟与数字信号关于频率的理解

模拟信号的频率:1秒内信号周期变化或重复了多少次,在日常生活中,以电风扇为例,频率指风扇1秒钟转了多少圈,模拟信号频率一般用f表示
模拟信号角频率:用弧度表示1秒内信号变化多少弧度,即Ω=2πf=2π/T(其中f为模拟信号的频率,T为模拟信号的周期),可以理解1秒钟旋转了多少个2π,或者1秒内经历了多少个信号周期T。
数字信号频率(数字角频率,或数字频率):数字信号是模拟信号的采样,为了建立模拟信号与数字信号的联系,以及与采样频率的关系,引入了数字频率,w=2πf/fs(其中f为模拟信号的频率,fs为采样频率),由于那奎斯特采样定律,f≤fs/2,因此数字频率的范围一般为(0,π),可以理解数字频率是模拟信号角频率相当于fs的归一化处理,基于按照2π归一化,可以表示的归一化频率为(0,0.5),在matlab或滤波器设计软件中设计数字滤波器起始或截止频率门限时,经常用归一化频率表示。

2、变采样对信号频率搬移变化的理解

首先采样率的变化对信号基带模拟频谱(物理频率)是没有影响的。
下面以3倍升采样为例,原数字频率的w1=2πf/fs,其数字频谱如下图:
在这里插入图片描述
3倍升采样后w2=2πf/3fs,即w2=w1/3,w2在w1三分之一处的数字频谱与w1的数字频谱是一致的,w2相当于w1的频谱在频率上压缩了三分之一,w2的数字频谱如下图所示:
在这里插入图片描述

3、升采样(内插)与降采样(抽取)方法

升采样(内插)的方法是在原两个采样点之间插入零,然后进行抗镜像低通滤波。在上面数字频谱中,可以看出在-π~π内出现了镜像信号,同样在对应的模拟信号频谱中,采样率的增加信号频谱周期性延拓的周期将增加,期间出现了多余的镜像信号,低通滤波器的作用是滤除镜像信号。

降采样(抽取)的方法是先进行抗混叠滤波器,然后再进行抽取。在模拟信号频谱中,抽取后信号频谱的周期延拓的周期将减少,如果过渡抽取将导致无法满足奈奎斯特采样定律,出现频谱混叠,或者干扰进入带内,同样在数字频谱中,抽取相当于信号扩展,抗混叠滤波器都是为了避免出现频谱混叠及干扰。

三、CIC滤波器幅频响应直观认识

CIC(Cascade Intergrator Comb):级联积分梳妆滤波器,是由积分器和梳妆滤波器级联而得。由于滤波器系数为1,无需对系数进行存储,无需乘法器,在设置抽取/插值因子时候不改变滤波器整体结构。
CIC的幅频响应函数如下,其中D为抽取倍数,M为延迟因子(一般为1)。
在这里插入图片描述
在CIC的幅频响应如下图所示:
在这里插入图片描述
matlab仿真参考代码如下:

%CIC frequence analyze
close all;
clear all;
clc;

resampleRate=16;%升采样倍数
cicFilerOrder=3;%阶数或级联数
sampleNum=400;%采样点数 
n=0:sampleNum-1;
w=n.*(pi/sampleNum);%0~pi间频率采样,pi对应fs/2
Hz=((sin(resampleRate*w/2))./(sin(w/2))).^(cicFilerOrder);
H_gui=abs(Hz)./max(abs(Hz));
plot(w/pi,20*log10(H_gui));
axis([0,1,-150,0]);%横轴显示0~1,纵轴显示-1500.

四、CIC滤波器设计级联框图

下面是3阶升采样(内插)CIC滤波器级联框图:
在这里插入图片描述
下面是3阶降采样(抽取)CIC滤波器级联框图,将梳妆滤波器与积分滤波器对调即可。
在这里插入图片描述

### 回答1: CIC滤波器数字信号处理领域常用的一种滤波器,因其具有高效率、低成本、易于实现等特点,被广泛应用于数字信号处理中。其原理是将输入信号经过移位、累加、除法等操作,得到输出信号,实现数字信号的抽取、平滑和滤波处理。 CIC滤波器设计主要分为三个步骤:抽取因子的选择、CIC滤波器的结构设计和防止过载的设计。 首先,在选择抽取因子时,需要考虑信号的采样率、信噪比、带宽等因素,通过分析和对比,确定最适合的抽取因子。 其次,在实现CIC滤波器的结构设计时,需要根据信号的特点和要求,选择相应的结构类型和参数设置。常见的结构类型有单级CIC滤波器、多级CIC滤波器和差分CIC滤波器等,每种结构类型都有不同的特点和适用范围。 最后,在防止过载的设计方面,需要考虑信号的幅度和极值问题,采取适当的增益补偿措施,避免信号过载和失真。 总的来说,CIC滤波器数字信号处理中具有广泛的应用前景和重要的研究价值,未来将继续发挥其优越的性能和特点,在滤波、调制、编码等方面取得更多的应用和进展。 ### 回答2: CIC滤波器(Cascaded Integrator-Comb Filter)是一种数字滤波器,由多个积分器和差分器级联而成。CIC滤波器的主要作用是在数字信号处理中进行抽取和插值操作,可以减少数据瓶颈,提高数据采样率,同时还能滤除高频信号成分。 CIC滤波器原理是将输入信号进行采样并缩小其幅度,然后通过积分器累加相邻样本的差值,最后再通过comb滤波器进行重叠平均,得到输出信号。CIC滤波器的具体设计需要考虑其采样率、抽取因子、插值因子等因素,同时还需要选择合适的滤波器结构和系数,以提高其滤波性能。 CIC滤波器的优点是具有低延迟、高精度、低复杂度等特点,适用于数字信号处理中的各种应用场景。同时,CIC滤波器也存在一些缺点,如滤波器的振荡问题、降噪性能不佳等,需要进一步优化和改进。 总之,CIC滤波器数字信号处理中一种重要的滤波器,其原理设计是理解和应用数字滤波器的基础,可以在各种应用中发挥重要作用。 ### 回答3: CIC滤波器数字信号处理中广泛使用的一种滤波器,它可以高效地对高速采样率的信号进行滤波。CIC滤波器的全称为“累加器-积分-累加器”滤波器,其结构简单,主要由一个累加器和一个积分器串联组成。 CIC滤波器的工作原理是:输入信号经过累加器和积分器的串联,先由累加器对过高的频率进行抑制,再由积分器对信号进行平滑处理,最后再经过一次累加器得到最终的输出信号。该滤波器的重点在于累加器和积分器的作用,累加器主要起到了抽取低频成分的作用,积分器则起到了对高频成分的滤波作用。 CIC滤波器设计需要确定一些关键参数,例如:采样率、截止频率滤波器阶数。其中,采样率是指采样点数除以单位时间,截止频率是指需要滤除的频率范围,滤波器阶数指需要滤波的信号所需的级数。根据这些参数,可以使用相关的设计公式得到累加器、积分器、移位器和补偿器的参数,进而确定CIC滤波器的结构和组成。 总之,CIC滤波器作为一种高效的数字滤波器,其原理简单而明确,设计需要考虑到各种关键参数,合理选择参数将帮助开发人员设计出更加高效、精确的滤波器
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值