c语言中矩阵乘积的秩,两个矩阵的乘积为零 它们的 秩有什么关系

关系: r(A)+r(B)<=n;

推导过程如下:

设AB = 0, A是mxn, B是nxs 矩阵;

则 B 的列向量都是 AX=0的秩;

所以 r(B)<=n-r(A);

所以 r(A)+r(B)<=n。

扩展资料:

秩性质

我们假定 A是在域 F上的 m× n矩阵并描述了上述线性映射。

只有零矩阵有秩 0 A的秩最大为 min(m,n) f是单射,当且仅当 A有秩 n(在这种情况下,我们称 A有“满列秩”)。

f是满射,当且仅当 A有秩 m(在这种情况下,我们称 A有“满行秩”)。

在方块矩阵A(就是 m= n) 的情况下,则 A是可逆的,当且仅当 A有秩 n(也就是 A有满秩)。如果 B是任何 n× k矩阵,则 AB的秩最大为 A的秩和 B的秩的小者。

即:秩(AB)≤min(秩(A),秩(B)) 推广到若干个矩阵的情况。

就是:秩(A1A2...Am)≤min(秩(A1),秩(A2),...秩(Am)) 证明:考虑矩阵的秩的线性映射的定义,令A、B对应的线性映射分别为 f和 g,则秩(AB)表示复合映射 f·g,它的象 Im f·g是 g的像 Im g在映射 f作用下的象。

然而 Im g是整个空间的一部分,因此它在映射 f作用下的象也是整个空间在映射 f作用下的象的一部分。也就是说映射 Im f·g是Im f的一部分。

对矩阵就是:秩(AB)≤秩(A)。对于另一个不等式:秩(AB)≤秩(B),考虑 Im g的一组基:(e1,e2,...,en),容易证明(f(e1),f(e2),...,f(en))生成了空间 Im f·g,于是 Im f·g的维度小于等于Im g的维度。

对矩阵就是:秩(AB)≤秩(B)。因此有:秩(AB)≤min(秩(A),秩(B))。若干个矩阵的情况证明类似。

作为 "

于是有以下性质:如果 B是秩 n的 n× k矩阵,则 AB有同 A一样的秩。如果 C是秩 m的 l× m矩阵,则 CA有同 A一样的秩。A的秩等于 r,当且仅当存在一个可逆 m× m矩阵 X和一个可逆的 n× n矩阵 Y使得 这里的 Ir指示 r× r单位矩阵。证明可以通过高斯消去法构造性地给出。

矩阵的秩加上矩阵的零化度等于矩阵的纵列数(这就是秩-零化度定理)。

参考资料来源:百度百科--秩

参考资料来源:百度百科--矩阵

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值