本文始发于公众号:TechFlow
矩阵的初等变换这个概念可能在很多人听来有些陌生,但其实我们早在初中的解多元方程组的时候就用过它。只不过在课本当中,这种方法叫做消元法。我们先来看一个课本里的例子:
{ 2 x 1 − x 2 − x 3 + x 4 = 2 , ( 1 ) x 1 + x 2 − 2 x 3 + x 4 = 4 , ( 2 ) 4 x 1 − 6 x 2 + 2 x 3 − 2 x 4 = 4 , ( 3 ) 3 x 1 + 6 x 2 − 9 x 3 + 7 x 4 = 9. ( 4 ) \begin{cases} 2x_1-x_2-x_3+x_4=2, & {(1)} \\ x_1+x_2-2x_3+x_4=4, & {(2)}\\ 4x_1-6x_2+2x_3-2x_4=4, & {(3)}\\ 3x_1+6x_2-9x_3+7x_4=9. & {(4)} \end{cases} ⎩⎪⎪⎪⎨⎪⎪⎪⎧2x1−x2−x3+x4=2,x1+x2−2x3+x4=4,4x1−6x2+2x3−2x4=4,3x1+6x2−9x3+7x4=9.(1)(2)(3)(4)
假设我们要解这个方程,怎么做呢?
首先,我们把(1)式加到(2)式,把(4)式加到(3)式,把(1)式乘6加到(4)式可以得到:
{ 2 x 1 − x 2 − x 3 + x 4 = 2 , ( 1 ) 3 x 1 − 3 x 3 + 2 x 4 = 6 , ( 2 ) 7 x 1 − 7 x 3 + 5 x 4 = 13 , ( 3 ) 15 x 1 − 15 x 3 + 13 x 4 = 21. ( 4 ) \begin{cases} 2x_1-x_2-x_3+x_4&=2, & {(1)} \\ \quad 3x_1-3x_3+2x_4&=6, & {(2)}\\ \quad 7x_1-7x_3+5x_4&=13, & {(3)}\\ 15x_1-15x_3+13x_4&=21. & {(4)} \end{cases} ⎩⎪⎪⎪⎨⎪⎪⎪⎧2x1−x2−x3+x43x1−3x3+2x47x1−7x3+5x415x1−15x3+13x4=2,=6,=13,=21.(1)(2)(3)(4)
我们再把(4)式减去(2)式乘5,可以解出 x 4 = − 3 x_4=-3 x4=−3:
{ 2 x 1 − x 2 − x 3 + x 4 = 2 , ( 1 ) 3 x 1 − 3 x 3 + 2 x 4 = 6 , ( 2 ) 7 x 1 − 7 x 3 + 5 x 4 = 13 , ( 3 ) 3 x 4 = − 9. ( 4 ) \begin{cases} 2x_1-x_2-x_3+x_4&=2, & {(1)} \\ \quad 3x_1-3x_3+2x_4&=6, & {(2)}\\ \quad 7x_1-7x_3+5x_4&=13, & {(3)}\\ \qquad\qquad\qquad3x_4&=-9. & {(4)} \end{cases} ⎩⎪⎪⎪⎨⎪⎪⎪⎧2x1−x2−x3+x43x1−3x3+2x47x1−7x3+5x43x4=2,=6,=13,=−9.(1)(2)(3)(4)
我们把 x 4 = − 3 x_4=-3 x4=−3带入,可以解出 x 1 , x 2 , x 3 x_1, x_2,x_3 x1,x2,x3。
{ x 1 = x 3 + 4 x 2 = x 3 + 3 x 4 = − 3 \begin{cases} x_1=x_3+4 \\ x_2=x_3+3\\ x_4=-3\\ \end{cases} ⎩⎪⎨⎪⎧x1=x3+4x2=x3+3x4=−3
因为消元之后,方程组的数量少于变量的数量,我们无法解出所有的变量。其中的 x 3 x_3 x3可以取任何值。
上面这个计算的方法我们都非常熟悉,如果我们用一个矩阵来表示所有的次数,那么这个矩阵D可以写成:
D = [ 2 − 1 − 1 1 2 1 1 − 2 1 4 4 − 6 2 − 2 4 3 6 − 9 7 9 ] D=\left[ \begin{matrix} 2 & -1 & -1 & 1 & 2\\ 1 & 1 & -2 & 1 & 4\\ 4 & -6 & 2 & -2 & 4\\ 3 & 6 & -9 & 7 & 9 \end{matrix} \right] D=⎣⎢⎢⎡2143−11−66−1