为什么两个矩阵相乘,秩没有变大,相加秩会变大

在这里插入图片描述

为什么 r a n k ( A B ) ≤ min ⁡ ( r a n k ( A ) , r a n k ( B ) ) rank(AB) \leq \min(rank(A), rank(B)) rank(AB)min(rank(A),rank(B))

这个不等式背后的原因是矩阵乘法的本质特性:

  1. 从列空间角度: 矩阵 A B AB AB 的列是矩阵 A A A 的列的线性组合。具体地说, A B AB AB 的每一列都可以表示为 A A A 的列向量的线性组合,系数由 B B B 的相应列提供。因此, A B AB AB 的列空间是 A A A 的列空间的子空间,所以 r a n k ( A B ) ≤ r a n k ( A ) rank(AB) \leq rank(A) rank(AB)rank(A)

  2. 从行空间角度: 类似地, A B AB AB 的行是 B B B 的行的线性组合。因此 A B AB AB 的行空间是 B B B 的行空间的子空间,所以 r a n k ( A B ) ≤ r a n k ( B ) rank(AB) \leq rank(B) rank(AB)rank(B)

  3. 结合这两点: 由于 r a n k ( A B ) rank(AB) rank(AB) 不能超过 r a n k ( A ) rank(A) rank(A) 也不能超过 r a n k ( B ) rank(B) rank(B),所以 r a n k ( A B ) ≤ min ⁡ ( r a n k ( A ) , r a n k ( B ) ) rank(AB) \leq \min(rank(A), rank(B)) rank(AB)min(rank(A),rank(B))

为什么 r a n k ( A + B ) ≤ r a n k ( A ) + r a n k ( B ) rank(A+B) \leq rank(A) + rank(B) rank(A+B)rank(A)+rank(B)

这个不等式的原因:

  1. 向量空间维度: 矩阵的秩表示其列(或行)张成的向量空间的维度。

  2. 和的列空间: 矩阵 A + B A+B A+B 的列空间包含在由 A A A 的列空间和 B B B 的列空间共同张成的空间中。

  3. 维度的上限: 如果两个子空间的维度分别是 r a n k ( A ) rank(A) rank(A) r a n k ( B ) rank(B) rank(B),那么它们共同张成的空间的维度最大为 r a n k ( A ) + r a n k ( B ) rank(A) + rank(B) rank(A)+rank(B)(当两个子空间没有交集时达到此上限)。

  4. 因此 r a n k ( A + B ) rank(A+B) rank(A+B) 不会超过 r a n k ( A ) + r a n k ( B ) rank(A) + rank(B) rank(A)+rank(B)

为什么"相乘秩没有变大,而相加秩变大了"?

  • 乘法:由于乘法是通过一个矩阵的列与另一个矩阵的行的线性组合,这个过程不会创造出新的线性无关向量,而只能保持或减少线性无关向量的数量。形象地说,乘法是一种"过滤"或"压缩"操作。

  • 加法:加法则是将两个向量空间合并,这可能会增加线性无关向量的数量(当两个空间有不同的线性无关向量时)。形象地说,加法是一种"扩展"或"合并"操作。

这就是为什么相乘不会增加秩,而相加可能会增加秩的根本原因。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI Agent首席体验官

您的打赏是我继续创作的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值