为什么 r a n k ( A B ) ≤ min ( r a n k ( A ) , r a n k ( B ) ) rank(AB) \leq \min(rank(A), rank(B)) rank(AB)≤min(rank(A),rank(B))?
这个不等式背后的原因是矩阵乘法的本质特性:
-
从列空间角度: 矩阵 A B AB AB 的列是矩阵 A A A 的列的线性组合。具体地说, A B AB AB 的每一列都可以表示为 A A A 的列向量的线性组合,系数由 B B B 的相应列提供。因此, A B AB AB 的列空间是 A A A 的列空间的子空间,所以 r a n k ( A B ) ≤ r a n k ( A ) rank(AB) \leq rank(A) rank(AB)≤rank(A)。
-
从行空间角度: 类似地, A B AB AB 的行是 B B B 的行的线性组合。因此 A B AB AB 的行空间是 B B B 的行空间的子空间,所以 r a n k ( A B ) ≤ r a n k ( B ) rank(AB) \leq rank(B) rank(AB)≤rank(B)。
-
结合这两点: 由于 r a n k ( A B ) rank(AB) rank(AB) 不能超过 r a n k ( A ) rank(A) rank(A) 也不能超过 r a n k ( B ) rank(B) rank(B),所以 r a n k ( A B ) ≤ min ( r a n k ( A ) , r a n k ( B ) ) rank(AB) \leq \min(rank(A), rank(B)) rank(AB)≤min(rank(A),rank(B))。
为什么 r a n k ( A + B ) ≤ r a n k ( A ) + r a n k ( B ) rank(A+B) \leq rank(A) + rank(B) rank(A+B)≤rank(A)+rank(B)?
这个不等式的原因:
-
向量空间维度: 矩阵的秩表示其列(或行)张成的向量空间的维度。
-
和的列空间: 矩阵 A + B A+B A+B 的列空间包含在由 A A A 的列空间和 B B B 的列空间共同张成的空间中。
-
维度的上限: 如果两个子空间的维度分别是 r a n k ( A ) rank(A) rank(A) 和 r a n k ( B ) rank(B) rank(B),那么它们共同张成的空间的维度最大为 r a n k ( A ) + r a n k ( B ) rank(A) + rank(B) rank(A)+rank(B)(当两个子空间没有交集时达到此上限)。
-
因此: r a n k ( A + B ) rank(A+B) rank(A+B) 不会超过 r a n k ( A ) + r a n k ( B ) rank(A) + rank(B) rank(A)+rank(B)。
为什么"相乘秩没有变大,而相加秩变大了"?
-
乘法:由于乘法是通过一个矩阵的列与另一个矩阵的行的线性组合,这个过程不会创造出新的线性无关向量,而只能保持或减少线性无关向量的数量。形象地说,乘法是一种"过滤"或"压缩"操作。
-
加法:加法则是将两个向量空间合并,这可能会增加线性无关向量的数量(当两个空间有不同的线性无关向量时)。形象地说,加法是一种"扩展"或"合并"操作。
这就是为什么相乘不会增加秩,而相加可能会增加秩的根本原因。