卷积的物理意义_从热传导方程理解卷积的意义

本文探讨了卷积在解决热传导方程中的物理意义。通过解析无限长细杆热传导定界问题的解,揭示卷积如何描述在不同时间点温度分布的变化。当特定条件满足时,卷积形式清楚地表示了在任意时刻的温度分布是由初始时刻的分布与高斯核的乘积决定的。理解这种物理背景有助于深化对卷积概念的理解。
摘要由CSDN通过智能技术生成

2f062da256d715e82802e0c6408b745c.png

最近数理方程正好学到了用积分变换解热传导方程,在解出的答案中出现了卷积,并且这个卷积对应着明确的物理意义。我觉得这对于物理专业的学生来说,这是理解卷积的很好的角度。所以在这里记录下来。

我们考虑无限长细杆的热传导的定界问题:

其中

是细杆在不同时刻不同位置的温度分布,它是
的函数。这个问题的物理意义是求解,当初始时刻无限长细杆上温度分布为
时,细杆上的温度分布会随时间如何演化。

在这里,我们直接给出这个方程的解:

其中

是高斯核,他的具体形式是:

到这里,我们虽然给出了这个方程的解,但是如果对卷积没有较为深刻的理解的话,我们还是无法看出这个解所包含的物理意义。为了考量这个解的物理意义,我们先考虑一种特殊的情况,即

这时我们可以很容易解出:

这个结果在

的极限下就正是

在不同的t下,我们画出细杆上的温度分布:

4c98b2debdfd7704c6f5f39a295bc2d5.png
(图片来自老师的课件)

可见,所谓的高斯核

,其实就是初始点源
在时间t引起的温度分布。并且它是随着时间的增加逐渐扩散开来,这也与我们的直觉相符。

这个时候,我们在回过头来看方程的解的卷积形式:

这个形式到底代表了什么意义也就很明显了。

这个卷积无非就是在告诉我们,在温度t时刻,无限长细杆上的温度分布,就等于初始时刻温度分布

在每一个点
上的温度值都以
的形式扩散开来,然后再把这些值全部叠加起来,这就得到了总的温度分布

如果弄明白了在这个问题中的卷积的意义,那么对于其他情景下的卷积的理解也就更加容易了。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值