反向传播算法_揭秘反向传播算法,原理介绍与理解

本文介绍了深度学习中的反向传播算法,包括神经网络的权重和偏见概念,梯度下降的优化过程,以及Sigmoid和ReLU函数在反向传播中的作用,帮助理解机器学习如何通过反向传播减少预测误差,提高模型准确性。
摘要由CSDN通过智能技术生成

编译 | bie管我叫啥

发布 | ATYUN订阅号

ae107e1cd9fb8e630cec233a90bebd5d.png

机器学习最重要的一个方面是它能够识别输出中的误差范围,并能够在数据集越来越多的时候通过其神经网络提供更精确的数据解释。这通常称为反向传播,这个过程并不像想象中的那么复杂。

当人们听到“机器学习”这个术语时,他们首先想到的是类似于“Matrix”的东西,到处都是电脑掌控着世界。

但这些并不是机器学习和反向传播之类的东西。下面是对此的详细解释和探讨。

深度学习:神经网络,权重和偏见

神经网络只是一个非常复杂的机器:你把输入放进机器,然后得到一些输出。这台机器由多个任务组成,这样你就能最终得到你想要的东西。你还可以调整作为此过程一部分的每个任务,从而在最后获得最佳工作状态和最准确的结果。

在神经网络中,任务是隐层,任务性能的调整称为权重。这决定了如何考虑隐藏层中的每个节点,从而影响最终输出的结果。机器学习的原理是通过输入大量的数据集(如试错)来调整任务,最终获得最优的输出。

5c57bfebe03c280ee55942f5c20f90ed.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值