python推荐系统算法朴素贝叶斯_请用简单易懂的语言描述朴素贝叶斯分类器?

假设你正在处理一个分类问题,你已经形成了一些假设,建立了一套特征并且确定了各变量的重要性。你的数据集中有一大堆数据点,但是只有很少的变量,而你的上司希望你能在一小时内给出预测数据,你会怎么办?

如果我是你,我会用朴素贝叶斯分类器。相比较其他分类方法,朴素贝叶斯简单高效,适合预测未知类数据集。

在这篇文章中,我将解释该算法的基础知识,如果你是Python和R语言的新手,下次你遇到大型数据集,你就能学以致用。

什么是朴素贝叶斯分类器?

朴素贝叶斯分类器是一种基于贝叶斯定理的弱分类器,所有朴素贝叶斯分类器都假定样本每个特征与其他特征都不相关。举个例子,如果一种水果其具有红,圆,直径大概3英寸等特征,该水果可以被判定为是苹果。尽管这些特征相互依赖或者有些特征由其他特征决定,然而朴素贝叶斯分类器认为这些属性在判定该水果是否为苹果的概率分布上独立的。

朴素贝叶斯分类器很容易建立,特别适合用于大型数据集,众所周知,这是一种胜过许多复杂算法的高效分类方法。

贝叶斯公式提供了计算后验概率P(X|Y)的方式:

其中,P(c|x)是已知某样本(c,目标),(x,属性)的概率。称后验概率。

P(c)是该样本“c”的概率。称先验概率。

P(x|c)是已知该样本“x”,该样本“c”的概率。

P(x)是该样本“x”的概率。

朴素贝叶斯算法的分类流程

让我举一个例子。下面我设计了一个天气和响应目标变量“玩”的训练数据集(计算“玩”的可能性)。我们需要根据天气条件进行分类,判断这个人能不能出去玩,以下是步骤:

步骤1:将数据集转换成频率表;

步骤2:计算不同天气出去玩的概率,并创建似然表,如阴天的概率是0.29;

步骤3:使用贝叶斯公式计算每一类的后验概率,数据最高那栏就是预测的结果。

问题:如果是晴天,这个人就能出去玩。这个说法是不是正确的?

P(是|晴朗)=P(晴朗|是)×P(是)/P(晴朗)

在这里,P(晴朗|是)= 3/9 = 0.33,P(晴朗)= 5/14 = 0.36,P(是)= 9/14 = 0.64

现在,P(是|晴朗)=0.33×0.64/0.36=0.60,具有较高的概率。

朴素贝叶斯适合预测基于各属性的不同类的概率,因此在文本分类上有广泛应用。

朴素贝叶斯的优缺点

优点:既简单又快速,预测表现良好;

如果变量独立这个条件成立,相比Logistic回归等其他分类方法,朴素贝叶斯分类器性能更优,且只需少量训练数据;

相较于数值变量,朴素贝叶斯分类器在多个分类变量的情况下表现更好。若是数值变量,需要正态分布假设。

缺点:如果分类变量的类别(测试数据集)没有在训练数据集总被观察到,那这个模型会分配一个0(零)概率给它,同时也会无法进行预测。这通常被称为“零频率”。为了解决这个问题,我们可以使用平滑技术,拉普拉斯估计是其中最基础的技术。

朴素贝叶斯也被称为bad estimator,所以它的概率输出predict_proba不应被太认真对待。

朴素贝叶斯的另一个限制是独立预测的假设。在现实生活中,这几乎是不可能的,各变量间或多或少都会存在相互影响。

朴素贝叶斯的4种应用

实时预测:毫无疑问,朴素贝叶斯很快。

多类预测:这个算法以多类别预测功能闻名,因此可以用来预测多类目标变量的概率。

文本分类/垃圾邮件过滤/情感分析:相比较其他算法,朴素贝叶斯的应用主要集中在文本分类(变量类型多,且更独立),具有较高的成功率。因此被广泛应用于垃圾邮件过滤(识别垃圾邮件)和情感分析(在社交媒体平台分辨积极情绪和消极情绪的用户)。

推荐系统:朴素贝叶斯分类器和协同过滤结合使用可以过滤出用户想看到的和不想看到的东西。

如何建立朴素贝叶斯的基本模型(Python和R)

scikit learn里有3种朴素贝叶斯的模型:

高斯模型:适用于多个类型变量,假设特征符合高斯分布。

多项式模型:用于离散计数。如一个句子中某个词语重复出现,我们视它们每个都是独立的,所以统计多次,概率指数上出现了次方。

伯努利模型:如果特征向量是二进制(即0和1),那这个模型是非常有用的。不同于多项式,伯努利把出现多次的词语视为只出现一次,更加简单方便。

你可以根据特定数据集选取上述3个模型中的合适模型。下面我们以高斯模型为例,谈谈怎么建立:Python

#Import Library of Gaussian Naive Bayes model

from sklearn.naive_bayes import GaussianNB

import numpy as np

#assigning predictor and target variables

x= np.array([[-3,7],[1,5], [1,2], [-2,0], [2,3], [-4,0], [-1,1], [1,1], [-2,2], [2,7], [-4,1], [-2,7]])

Y = np.array([3, 3, 3, 3, 4, 3, 3, 4, 3, 4, 4, 4])

#Create a Gaussian Classifier

model = GaussianNB()

# Train the model using the training sets

model.fit(x, y)

#Predict Output

predicted= model.predict([[1,2],[3,4]])

print predicted

Output: ([3,4])

R

require(e1071) #Holds the Naive Bayes Classifier

Train

Test

#Make sure the target variable is of a two-class classification problem only

levels(Train$Item_Fat_Content)

model

class(model)

pred

table(pred)

关于朴素贝叶斯分类器的几个黑科技

以下是一些小方法,可以提升朴素贝叶斯分类器的性能:如果连续特征不是正态分布的,我们应该使用各种不同的方法将其转换正态分布。

如果测试数据集具有“零频率”的问题,应用平滑技术“拉普拉斯估计”修正数据集。

删除重复出现的高度相关的特征,可能会丢失频率信息,影响效果。

朴素贝叶斯分类在参数调整上选择有限。我建议把重点放在数据的预处理和特征选择。

大家可能想应用一些分类组合技术 如ensembling、bagging和boosting,但这些方法都于事无补。因为它们的目的是为了减少差异,朴素贝叶斯没有需要最小化的差异。

原回答:

考虑过滤垃圾邮件这个经典例子。

怎么过滤垃圾邮件?

最简单的分类方法,就是预先定义一些规则,例如发件人、关键词、发信服务器和声称的地址是否一致等。但是,这样预先设定的分类方法实际效果并不是很好。

因为预先定义完善的规则需要花费大量的精力,而且不同用户需要的规则也是不一样的。另外,从产品的角度来说,很多用户可能并不具备设定一个完善的规则的能力或者精力。

其次,在利益的驱使下,垃圾邮件的发送者会不断改进自身的系统。因此,预先定义的规则哪怕再完善,也会逐渐过时。

而通过机器学习,能“自行”学习哪些邮件是垃圾邮件,不需要预先设定完善的规则,也能随垃圾邮件的变化而变化,遇强则强。

就拿根据关键词过滤垃圾邮件来说吧。传统的做法是预先定义出现哪些关键词就判定为垃圾邮件。那这个做法面对千变万化的垃圾邮件显然会很无力。如果通过机器学习来过滤的话,那我们可以一方面统计某些词语在正常邮件和垃圾邮件中出现的频率,根据两者的不同推断一封新邮件是正常邮件还是垃圾邮件;另一方面,我们又可以利用推断的结果反过来推断某些词语在正常邮件和垃圾邮件中出现的频率。这样,这个系统分类的邮件越多,识别效果就越好。

抽象一下,我们根据历史数据统计某一特征f在分类S和N中出现的概率(pSucc f S和pSucc f N),据此推断新数据属于S还是N。同时,我们根据新数据的分类,推断分类为S和N的邮件具有特征f的概率(pSucc S f和pSucc N f),并进而调整pSucc f S和pSucc f N的值。

那么这个学习过程其实是辗转计算pSucc f S和pSucc S f这一组概率(N的情况同理)。

那pSucc f S和pSucc S f有什么关系呢?

我们尝试代入一个具体的例子来摸索一下。假设f代表邮件中出现了“正规发票”这个词,而S代表这封邮件是垃圾邮件。那么,直觉上,我们有:包含“正规发票”这个词的邮件是垃圾邮件的概率越大,相应地,垃圾邮件中包含“正规发票”这个词的概率也越大

包含“正规发票”这个词的邮件是垃圾邮件的概率和垃圾邮件中包含“正规发票”这个词的概率并不相等

包含“正规发票”这个词的邮件是垃圾邮件的概率大于垃圾邮件中包含“正规发票”这个词的概率

抽象上述表述,我们得到:

pSucc f S = coefficient * (pSucc S f) -- coefficient > 0

pSucc f S /= pSucc S f

pSucc f S > pSucc S f

一般地,f和S可以认为是两个先后发生的事件,pSucc f S可以认为是f发生后S发生的概率(这叫做条件概率或后验概率),pSucc S f同理。

交换f和S, 我们得到:

pSucc S f = coefficient * (pSucc f S) -- coefficient > 0

pSucc S f /= pSucc f S

pSucc S f > pSucc f S

我们看到,前 2 条没问题,第 3 条出现了矛盾。 这说明前面我们抽象不当,f和S并不是一般的两个事件,f和S还具有一些我们没有考虑的隐含性质。

回头看我们的直觉:包含“正规发票”这个词的邮件是垃圾邮件的概率大于垃圾邮件中包含“正规发票”这个词的概率

这一条背后其实有一个假设:碰到包含“正规发票”这个词的邮件的概率要小于碰到垃圾邮件的概率。

也就是说,p f < p S.

假设p f不为 0, 稍加变形,我们得到(p S) / (p f) > 1.

然后我们再将f和S抽象为一般事件,那么我们可以用(p S) / (p f)来表示

pSucc f S = coefficient * (pSucc S f)

中的系数coefficient,这样,当p f < p S的时候,就有pSucc f S > pSucc S f,反之,当p f > p S的时候,pSucc f S < pSucc S f。

这样我们就得到了pSucc f S和pSucc S f的关系:

pSucc f S = ((p S) / (p f)) * (pSucc S f)

显而易见,互换f和S没问题(假设p S不为 0)。

既然f和S是一般事件,我们不妨用a和b替换它们,以凸显其一般性:

pSucc a b = ((p b) / (p a)) * (pSucc b a)

贝叶斯在18世纪发现了上面这个公式,因此它被称为贝叶斯定理(Bayes' theorem)。之所以称为定理,是因为贝叶斯是基于条件概率的定义推导出这个公式的。我们认为贝叶斯定理足够简单,因此跳过条件概率的定义直接讲贝叶斯定理。

回到垃圾邮件过滤的问题,前面我们提到:一方面我们统计邮件中某些词语在正常邮件和垃圾邮件中出现的频率,根据两者的不同推断一封新邮件是正常邮件还是垃圾邮件,

这和贝叶斯定理有些差距。也就是说,实际上我们没有直接统计p f,而是分别统计了pSucc N f和pSucc S f.由于我们的分类系统不考虑无法判定的情况,因此一封邮件要么是正常邮件,要么是垃圾邮件,也就是说,p N + p S = 1.同时,既然pSucc N f表示已知一封邮件是正常邮件时,它具有特征f的概率,那么一封正常邮件具有特征f的概率就是(p N) * (pSucc N f)。同理,一封垃圾邮件具有特征f的概率就是(p S) * (pSucc S f)。因此一封邮件具有特征f的概率为:

p f = (p N) * (pSucc N f) + (p S) * (pSucc S f)

由此我们得到贝叶斯定理的一个变体,如果我们定义:

p -b = 1 - (p b)

那么贝叶斯定理就可以表述为:

pSucc a b =

(p b) * (pSucc b a) /

((p b) * (pSucc b a) + (p -b) * (pSucc -b a))

垃圾邮件过滤系统不可能只检查一个词,因此我们尝试推广到多个特征的情况:

pSucc [f1, f2 .. fn] S =

(p S) * (pSucc S [f1, f2 .. fn]) / (p [f1, f2 .. fn])

其中,p S和p [f1, f2 .. fn]都很容易统计,而pSucc S [f1, f2 .. fn]的计算复杂度很高,特别是,S中同时具有[f1, f2 .. fn]的样本可能很少(稀疏),那训练的效果就很差了。

那怎么办呢?

我们可以假设[f1, f2 .. fn]的每一项都是独立事件。这样,pSucc S [f1, f2 .. fn]就可以化简为

(pSucc S f1) * (pSucc S f2) * .. * (pSucc S fn)

这样我们就只需要独立计算分类为S的情况下具有某一个特征的概率了,避免了样本稀疏的问题,同时,每一项都可以分布式地跑。

上面的式子中,如果某一项没有出现过,也就是说,分类为S的情况下训练集的数据中不存在具有某特定特征的样本,那一项的条件概率会为0,从而导致最后相乘的结果为0,也就是将其他各项的概率消除。为了避免这个问题,我们可以强行将概率为0的项修正为一个小概率,比如 0.01,具体数值无关紧要,因为以后如果训练集中新增了相应的样本,这个概率会自动得到修正的。当然,这样有点粗暴。更合理的做法是所有的样本数都加1,并相应增加总数,这样原本为0的样本数就变为1,避免了概率为0的情况。因为训练集一般都很大,所以样本数加1没什么影响。这种做法称为拉普拉斯平滑(Laplacian Smoothing)。当然,如果有必要,也可以改为加上一个小于1的正数。

别忘了,前面我们为了简化运算量,假设[f1, f2 .. fn]的每一项都是独立事件,这个假设可不一定成立。因此这个算法叫做幼稚贝叶斯分类器或者朴素贝叶斯分类器(Naive Bayes Classifier)。这个名称就是强调独立事件的假设不一定成立。

尽管独立事件的假设常常是不准确的,但朴素贝叶斯在实际工程中出乎意料地好用。因为很多应用并不在乎精确的类概率,只关心最后的分类结果。比如垃圾邮件过滤,只需要判断是否是垃圾邮件,并不需要在用户界面显示“本邮件有 87.53% 的概率是垃圾邮件”之类的信息。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值