python贝叶斯网络预测模型_概率图模型之:贝叶斯网络

本文介绍了贝叶斯定理的概念及其在网络中的应用,详细阐述了贝叶斯网络的结构和全概率公式。通过一个学生模型案例,展示了如何使用Python的pgmpy库建立和验证贝叶斯网络,包括定义模型、设置条件概率分布,并进行了概率查询。
摘要由CSDN通过智能技术生成

1、贝叶斯定理

P(A∣B)=P(A)P(B∣A)P(B)

P(A|B)是已知B发生后A的条件概率,也由于得自B的取值而被称作A的后验概率。

P(B|A)是已知A发生后B的条件概率,也由于得自A的取值而被称作B的后验概率。

P(A)是A的先验概率或边缘概率。之所以称为”先验”是因为它不考虑任何B方面的因素。

P(B)是B的先验概率或边缘概率。

贝叶斯定理可表述为:后验概率 = (相似度 * 先验概率) / 标准化常量

也就是说,后验概率与先验概率和相似度的乘积成正比。

比例P(B|A)/P(B)也有时被称作标准相似度,贝叶斯定理可表述为:后验概率 = 标准相似度 * 先验概率

假设{Ai}是事件集合里的部分集合,对于任意的Ai,贝叶斯定理可用下式表示:

2、贝叶斯网络

贝叶斯网络,由一个有向无环图(DAG)和条件概率表(CPT)组成。

贝叶斯网络通过一个有向无环图来表示一组随机变量跟它们的条件依赖关系。它通过条件概率分布来参数化。每一个结点都通过P(node|Pa(node))来参数化,Pa(node)表示网络中的父节点。

如图是一个简单的贝叶斯网络,其对应的全概率公式为:

P(a,b,c)=P(c∣a,b)P(b∣a)P(a)

较复杂的贝叶斯网络,其对应的全概率公式为:

P(x1,x2,x3,x4,x5,x6,x7)=P(x1)P(x2)P(x3)P(x4∣x1,x2,x3)P(x5∣x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值