当我们想要了解变量的相关程度时,就需要用到相关分析,而相关分析也是回归之前很重要的一步,通常用到的方法是pearson方法。
首先解释一下相关系数,相关系数反应的是两个变量之间变化趋势的方向以及程度,其值范围为-1到+1,正值表示正相关,负值表示负相关,绝对值越大表示相关性越强。
具体spss做法如下:
分析-相关-双变量
选择需要进行相关分析的变量,在相关系数选择pearson,如果还需要描述统计,可以在选项里选择
点击确定,得到相关分析的结果:
这个结果该如何解读呢?
Pearson相关性:pearson相关系数,当系数为正表示两者正相关,负表示负相关,本结果表示x与y负相关,相关系数为-0.394
显著性:表示相关的统计学显著性,同样有1%,5%,10%的标准,具体怎么写看以前的文章有讲过,本结果表示x与y在1%的水平显著负相关。
一些医学生在做的时候也会遇到spearman的方法,做法是一致的,只是两种方法的适用条件不同,我把两种方法的适用条件总结到这里:
Pearson: 1.xy都是随机变量 2.双变量正态分布 3.各观测值相互独立,并且根据因变量y和自变量x所做的散点图要服从线性趋势。
spearman:1.x y不服从双变量正态分布2.总体分布类型未知 3.数据本身有不确定值4.等级资料。