一 多进程编程
Python实现多进程的方式有两种:一种方法是os模块中的fork方法,另一种是使用multiprocessing模块。
前者仅适用于LINUX/UNIX操作系统,对Windows不支持,后者则是跨平台的实现方式。
第一种方式:使用os模块中的fork方式实现多进程
importosif __name__ == '__main__':print 'current Process (%s) start ...'%(os.getpid())
pid=os.fork()if pid <0:print 'error in fork'
elif pid ==0:print 'I am child process(%s) and my parent process is (%s)',(os.getpid(),os.getppid())else:print 'I(%s) created a chlid process (%s).',(os.getpid(),pid)
第二种方式:multiprocessing
由于GIL的存在,python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程。Python提供了非常好用的多进程包multiprocessing,只需要定义一个函数,Python会完成其他所有事情。借助这个包,可以轻松完成从单进程到并发执行的转换。multiprocessing支持子进程、通信和共享数据、执行不同形式的同步,提供了Process、Queue、Pipe、Lock等组件。
在UNIX平台上,当某个进程终结之后,该进程需要被其父进程调用wait,否则进程成为僵尸进程(Zombie)。所以,有必要对每个Process对象调用join()方法 (实际上等同于wait)。对于多线程来说,由于只有一个进程,所以不存在此必要性。
multiprocessing提供了threading包中没有的IPC(比如Pipe和Queue),效率上更高。应优先考虑Pipe和Queue,避免使用Lock/Event/Semaphore/Condition等同步方式 (因为它们占据的不是用户进程的资源)。
多进程应该避免共享资源。在多线程中,我们可以比较容易地共享资源,比如使用全局变量或者传递参数。在多进程情况下,由于每个进程有自己独立的内存空间,以上方法并不合适。此时我们可以通过共享内存和Manager的方法来共享资源。但这样做提高了程序的复杂度,并因为同步的需要而降低了程序的效率。
Process.PID中保存有PID,如果进程还没有start(),则PID为None。
window系统下,需要注意的是要想启动一个子进程,必须加上那句if __name__ == "main",进程相关的要写在这句下面。
创建进程的类:Process([group [, target [, name [, args [, kwargs]]]]]),target表示调用对象,args表示调用对象的位置参数元组。kwargs表示调用对象的字典。name为别名。group实质上不使用。
方法:is_alive()、join([timeout])、run()、start()、terminate()。其中,Process以start()启动某个进程。join()方法实现进程间的同步。
#__author: greg#date: 2017/9/19 23:52
from multiprocessing importProcessimporttimedeff(name):
time.sleep(1)print('hello', name,time.ctime())if __name__ == '__main__':
p_list=[]for i in range(3):
p= Process(target=f, args=('alvin',))
p_list.append(p)
p.start()for i inp_list:
i.join()print('end')#一个主进程,三个子进程
#output:#hello alvin Fri Nov 24 19:10:08 2017#hello alvin Fri Nov 24 19:10:08 2017#hello alvin Fri Nov 24 19:10:08 2017#end
类式调用:
#__author: greg#date: 2017/9/21 20:02
from multiprocessing importProcessimporttimeclassMyProcess(Process):def __init__(self):
super(MyProcess, self).__init__()#self.name = name
defrun(self):
time.sleep(1)print ('hello', self.name,time.ctime())if __name__ == '__main__':
p_list=[]for i in range(3):
p=MyProcess()
p.start()
p_list.append(p)for p inp_list:
p.join()print('end')#output:#hello MyProcess-1 Fri Nov 24 19:12:17 2017#hello MyProcess-2 Fri Nov 24 19:12:17 2017#hello MyProcess-3 Fri Nov 24 19:12:17 2017#end
显示进程ID号:
#__author: greg#date: 2017/9/21 20:16
from multiprocessing importProcessimportosimporttimedefinfo(title):print(title)print('module name:', __name__)print('parent process:', os.getppid())#父进程号
print('process id:', os.getpid())#进程号
deff(name):
info('\033[31;1mfunction f\033[0m')print('hello', name)if __name__ == '__main__':
info('\033[32;1mmain process line\033[0m')
time.sleep(10)
p= Process(target=info, args=('bob',))
p.start()
p.join()#output:#main process line#module name: __main__#parent process: 1548 pycharm的进程号#process id: 8416 Python进程号#bob#module name: __mp_main__#parent process: 8416 Python进程号#process id: 5556 info进程号
二 Process类
构造方法:
Process([group [, target [, name [, args [, kwargs]]]]])
group: 线程组,目前还没有实现,库引用中提示必须是None;
target: 要执行的方法;
name: 进程名;
args/kwargs: 要传入方法的参数。
实例方法:
is_alive():返回进程是否在运行。
join([timeout]):阻塞当前上下文环境的进程程,直到调用此方法的进程终止或到达指定的timeout(可选参数)。
start():进程准备就绪,等待CPU调度
run():strat()调用run方法,如果实例进程时未制定传入target,这star执行t默认run()方法。
terminate():不管任务是否完成,立即停止工作进程
属性:
authkey
daemon:和线程的setDeamon功能一样
exitcode(进程在运行时为None、如果为–N,表示被信号N结束)
name:进程名字。
pid:进程号。
三 进程间通讯
不同进程间内存是不共享的,要想实现两个进程间的数据交换,可以用以下方法:
Queues 用来在多个进程间通信:
1. 阻塞模式
importqueueimporttime
q= queue.Queue(10) #创建一个队列
start=time.time()for i in range(10):
q.put('A')
time.sleep(0.5)
end=time.time()print(end-start)
这是一段极其简单的代码(另有两个线程也在操作队列q),我期望每隔0.5秒写一个'A'到队列中,但总是不能如愿:
间隔时间有时会远远超过0.5秒。
原来,Queue.put()默认有 block = True 和 timeout两个参数。
源码:def put(self, item, block=True, timeout=None):
当 block = True 时,写入是阻塞式的,阻塞时间由 timeout确定。
当队列q被(其他线程)写满后,这段代码就会阻塞,直至其他线程取走数据。
Queue.put()方法加上 block=False 的参数,即可解决这个隐蔽的问题。
但要注意,非阻塞方式写队列,当队列满时会抛出 exception Queue.Full 的异常。
#__author: greg#date: 2017/9/21 22:27
from multiprocessing importProcess, Queuedeff(q,n):
q.put([42, n, 'hello'])print('subprocess id',id(q))if __name__ == '__main__':
q=Queue()
p_list=[]print('process id',id(q))for i in range(3):
p= Process(target=f, args=(q,i))
p_list.append(p)
p.start()print(q.get())print(q.get())print(q.get())for i inp_list:
i.join()#output#process id 2284856854176#subprocess id 2607348001872#[42, 0, 'hello']#subprocess id 1712786975824#[42, 2, 'hello']#subprocess id 2254764977120#[42, 1, 'hello']
Pipe常用来两个进程间进行通信,两个进程分别位于管道的两端
deff(conn):
conn.send([42, None, 'hello'])
conn.close()if __name__ == '__main__':
parent_conn, child_conn=Pipe()
p= Process(target=f, args=(child_conn,))
p.start()print(parent_conn.recv()) #prints "[42, None, 'hello']"
p.join()
Pipe方法返回(conn1, conn2)代表一个管道的两个端。Pipe方法有duplex参数,如果duplex参数为True(默认值),那么这个管道是全双工模式,也就是说conn1和conn2均可收发。duplex为False,conn1只负责接受消息,conn2只负责发送消息。
send和recv方法分别是发送和接受消息的方法。例如,在全双工模式下,可以调用conn1.send发送消息,conn1.recv接收消息。如果没有消息可接收,recv方法会一直阻塞。如果管道已经被关闭,那么recv方法会抛出EOFError。
#__author: greg#date: 2017/9/21 22:57
importmultiprocessingimportrandomimporttime,osdefproc_send(pipe,urls):for url inurls:print("Process(%s) send: %s" %(os.getpid(),url))
pipe.send(url)
time.sleep(random.random())defproc_recv(pipe):whileTrue:print("Process(%s) rev:%s" %(os.getpid(),pipe.recv()))
time.sleep(random.random())if __name__=="__main__":
pipe=multiprocessing.Pipe()
p1=multiprocessing.Process(target=proc_send,args=(pipe[0],['url_'+str(i)for i in range(10)]))
p2=multiprocessing.Process(target=proc_recv,args=(pipe[1],))
p1.start()
p2.start()
p1.join()
p2.terminate()
Manager()返回的管理器对象控制一个服务器进程,该进程持有Python对象,并允许其他进程使用代理来操纵它们。
#__author: greg#date: 2017/9/21 23:10
from multiprocessing importProcess, Managerdeff(d, l,n):
d[n]= '1'd['2'] = 2d[0.25] =None
l.append(n)#print(l)
if __name__ == '__main__':
with Manager() as manager:
d=manager.dict()
l= manager.list(range(5))
p_list=[]for i in range(10):
p= Process(target=f, args=(d, l,i))
p.start()
p_list.append(p)for res inp_list:
res.join()print(d)print(l)
四 进程同步
当多个进程需要访问共享资源的时候,Lock可以用来避免访问的冲突。
#__author: greg#date: 2017/9/21 23:25
from multiprocessing importProcess, Lockdeff(l, i):
l.acquire()try:print('hello world', i)finally:
l.release()if __name__ == '__main__':
lock=Lock()for num in range(10):
Process(target=f, args=(lock, num)).start()
五 进程池 Pool类
Pool可以提供指定数量的进程供用户使用,默认大小是CPU的核数。当有新的请求提交到Pool中时,如果池还没有满,那么就会创建一个新的进程来执行该请求
但如果池中的进程数已经达到规定的最大值,那么该请求就会等待,直到池中有进程结束,才会创建新的进程来处理它。
#-*- coding: utf-8 -*-#2017/11/24 20:15
from multiprocessing importPoolimportos, time, randomdefrun_task(name):print('Task %s (pid = %s) is running...' %(name, os.getpid()))
time.sleep(random.random()* 3)print('Task %s end.' %name)if __name__=='__main__':print('Current process %s.' %os.getpid())
p= Pool(processes=3)for i in range(5):
p.apply_async(run_task, args=(i,))print('Waiting for all subprocesses done...')
p.close()
p.join()print('All subprocesses done.')"""Current process 9788.
Waiting for all subprocesses done...
Task 0 (pid = 5916) is running...
Task 1 (pid = 3740) is running...
Task 2 (pid = 6964) is running...
Task 2 end.
Task 3 (pid = 6964) is running...
Task 1 end.
Task 4 (pid = 3740) is running...
Task 0 end.
Task 3 end.
Task 4 end.
All subprocesses done."""
apply_async(func[, args[, kwds[, callback]]]) 它是非阻塞,apply(func[, args[, kwds]])是阻塞的
close() 关闭pool,使其不在接受新的任务。
terminate() 结束工作进程,不在处理未完成的任务。
join() 主进程阻塞,等待子进程的退出, join方法要在close或terminate之后使用。
每次最多运行3个进程,当一个任务结束了,新的任务依次添加进来,任务执行使用的进程依然是原来的进程,这一点通过进程的pid可以看出来。